mesytec-mnode/external/taskflow-3.8.0/taskflow/algorithm/data_pipeline.hpp
2025-01-04 01:25:05 +01:00

637 lines
16 KiB
C++

#pragma once
#include "pipeline.hpp"
namespace tf {
// ----------------------------------------------------------------------------
// Class Definition: DataPipe
// ----------------------------------------------------------------------------
/**
@class DataPipe
@brief class to create a stage in a data-parallel pipeline
A data pipe represents a stage of a data-parallel pipeline.
A data pipe can be either @em parallel direction or @em serial direction
(specified by tf::PipeType) and is associated with a callable to invoke
by the pipeline scheduler.
You need to use the template function, tf::make_data_pipe, to create
a data pipe. The input and output types of a tf::DataPipe should be decayed types
(though the library will always decay them for you using `std::decay`)
to allow internal storage to work.
The data will be passed by reference to your callable, at which you can take
it by copy or reference.
@code{.cpp}
tf::make_data_pipe<int, std::string>(
tf::PipeType::SERIAL,
[](int& input) {return std::to_string(input + 100);}
);
@endcode
In addition to the data, you callable can take an additional reference
of tf::Pipeflow in the second argument to probe the runtime information
for a stage task, such as its line number and token number:
@code{.cpp}
tf::make_data_pipe<int, std::string>(
tf::PipeType::SERIAL,
[](int& input, tf::Pipeflow& pf) {
printf("token=%lu, line=%lu\n", pf.token(), pf.line());
return std::to_string(input + 100);
}
);
@endcode
*/
template <typename Input, typename Output, typename C>
class DataPipe {
template <typename... Ps>
friend class DataPipeline;
public:
/**
@brief callable type of the data pipe
*/
using callable_t = C;
/**
@brief input type of the data pipe
*/
using input_t = Input;
/**
@brief output type of the data pipe
*/
using output_t = Output;
/**
@brief default constructor
*/
DataPipe() = default;
/**
@brief constructs a data pipe
You should use the helper function, tf::make_data_pipe,
to create a DataPipe object, especially when you need tf::DataPipe
to automatically deduct the lambda type.
*/
DataPipe(PipeType d, callable_t&& callable) :
_type{d}, _callable{std::forward<callable_t>(callable)} {
}
/**
@brief queries the type of the data pipe
A data pipe can be either parallel (tf::PipeType::PARALLEL) or serial
(tf::PipeType::SERIAL).
*/
PipeType type() const {
return _type;
}
/**
@brief assigns a new type to the data pipe
*/
void type(PipeType type) {
_type = type;
}
/**
@brief assigns a new callable to the data pipe
@tparam U callable type
@param callable a callable object constructible from the callable type
of this data pipe
Assigns a new callable to the pipe using universal forwarding.
*/
template <typename U>
void callable(U&& callable) {
_callable = std::forward<U>(callable);
}
private:
PipeType _type;
callable_t _callable;
};
/**
@brief function to construct a data pipe (tf::DataPipe)
@tparam Input input data type
@tparam Output output data type
@tparam C callable type
tf::make_data_pipe is a helper function to create a data pipe (tf::DataPipe)
in a data-parallel pipeline (tf::DataPipeline).
The first argument specifies the direction of the data pipe,
either tf::PipeType::SERIAL or tf::PipeType::PARALLEL,
and the second argument is a callable to invoke by the pipeline scheduler.
Input and output data types are specified via template parameters,
which will always be decayed by the library to its original form
for storage purpose.
The callable must take the input data type in its first argument
and returns a value of the output data type.
@code{.cpp}
tf::make_data_pipe<int, std::string>(
tf::PipeType::SERIAL,
[](int& input) {
return std::to_string(input + 100);
}
);
@endcode
The callable can additionally take a reference of tf::Pipeflow,
which allows you to query the runtime information of a stage task,
such as its line number and token number.
@code{.cpp}
tf::make_data_pipe<int, std::string>(
tf::PipeType::SERIAL,
[](int& input, tf::Pipeflow& pf) {
printf("token=%lu, line=%lu\n", pf.token(), pf.line());
return std::to_string(input + 100);
}
);
@endcode
*/
template <typename Input, typename Output, typename C>
auto make_data_pipe(PipeType d, C&& callable) {
return DataPipe<Input, Output, C>(d, std::forward<C>(callable));
}
// ----------------------------------------------------------------------------
// Class Definition: DataPipeline
// ----------------------------------------------------------------------------
/**
@class DataPipeline
@brief class to create a data-parallel pipeline scheduling framework
@tparam Ps data pipe types
Similar to tf::Pipeline, a tf::DataPipeline is a composable graph object
for users to create a <i>data-parallel pipeline scheduling framework</i>
using a module task in a taskflow.
The only difference is that tf::DataPipeline provides a data abstraction
for users to quickly express dataflow in a pipeline.
The following example creates a data-parallel pipeline of three stages
that generate dataflow from `void` to `int`, `std::string`, and `void`.
@code{.cpp}
#include <taskflow/taskflow.hpp>
#include <taskflow/algorithm/data_pipeline.hpp>
int main() {
// data flow => void -> int -> std::string -> void
tf::Taskflow taskflow("pipeline");
tf::Executor executor;
const size_t num_lines = 4;
tf::DataPipeline pl(num_lines,
tf::make_data_pipe<void, int>(tf::PipeType::SERIAL, [&](tf::Pipeflow& pf) -> int{
if(pf.token() == 5) {
pf.stop();
return 0;
}
else {
return pf.token();
}
}),
tf::make_data_pipe<int, std::string>(tf::PipeType::SERIAL, [](int& input) {
return std::to_string(input + 100);
}),
tf::make_data_pipe<std::string, void>(tf::PipeType::SERIAL, [](std::string& input) {
std::cout << input << std::endl;
})
);
// build the pipeline graph using composition
taskflow.composed_of(pl).name("pipeline");
// dump the pipeline graph structure (with composition)
taskflow.dump(std::cout);
// run the pipeline
executor.run(taskflow).wait();
return 0;
}
@endcode
The pipeline schedules five tokens over four parallel lines in a circular fashion,
as depicted below:
@code{.shell-session}
o -> o -> o
| | |
v v v
o -> o -> o
| | |
v v v
o -> o -> o
| | |
v v v
o -> o -> o
@endcode
*/
template <typename... Ps>
class DataPipeline {
static_assert(sizeof...(Ps)>0, "must have at least one pipe");
/**
@private
*/
struct Line {
std::atomic<size_t> join_counter;
};
/**
@private
*/
struct PipeMeta {
PipeType type;
};
public:
/**
@brief internal storage type for each data token (default std::variant)
*/
using data_t = unique_variant_t<std::variant<std::conditional_t<
std::is_void_v<typename Ps::output_t>,
std::monostate,
std::decay_t<typename Ps::output_t>>...
>>;
/**
@brief constructs a data-parallel pipeline object
@param num_lines the number of parallel lines
@param ps a list of pipes
Constructs a data-parallel pipeline of up to @c num_lines parallel lines to schedule
tokens through the given linear chain of pipes.
The first pipe must define a serial direction (tf::PipeType::SERIAL)
or an exception will be thrown.
*/
DataPipeline(size_t num_lines, Ps&&... ps);
/**
@brief constructs a data-parallel pipeline object
@param num_lines the number of parallel lines
@param ps a tuple of pipes
Constructs a data-parallel pipeline of up to @c num_lines parallel lines to schedule
tokens through the given linear chain of pipes stored in a std::tuple.
The first pipe must define a serial direction (tf::PipeType::SERIAL)
or an exception will be thrown.
*/
DataPipeline(size_t num_lines, std::tuple<Ps...>&& ps);
/**
@brief queries the number of parallel lines
The function returns the number of parallel lines given by the user
upon the construction of the pipeline.
The number of lines represents the maximum parallelism this pipeline
can achieve.
*/
size_t num_lines() const noexcept;
/**
@brief queries the number of pipes
The Function returns the number of pipes given by the user
upon the construction of the pipeline.
*/
constexpr size_t num_pipes() const noexcept;
/**
@brief resets the pipeline
Resetting the pipeline to the initial state. After resetting a pipeline,
its token identifier will start from zero as if the pipeline was just
constructed.
*/
void reset();
/**
@brief queries the number of generated tokens in the pipeline
The number represents the total scheduling tokens that has been
generated by the pipeline so far.
*/
size_t num_tokens() const noexcept;
/**
@brief obtains the graph object associated with the pipeline construct
This method is primarily used as an opaque data structure for creating
a module task of this pipeline.
*/
Graph& graph();
private:
Graph _graph;
size_t _num_tokens;
std::tuple<Ps...> _pipes;
std::array<PipeMeta, sizeof...(Ps)> _meta;
std::vector<std::array<Line, sizeof...(Ps)>> _lines;
std::vector<Task> _tasks;
std::vector<Pipeflow> _pipeflows;
std::vector<CachelineAligned<data_t>> _buffer;
template <size_t... I>
auto _gen_meta(std::tuple<Ps...>&&, std::index_sequence<I...>);
void _on_pipe(Pipeflow&, Runtime&);
void _build();
};
// constructor
template <typename... Ps>
DataPipeline<Ps...>::DataPipeline(size_t num_lines, Ps&&... ps) :
_pipes {std::make_tuple(std::forward<Ps>(ps)...)},
_meta {PipeMeta{ps.type()}...},
_lines (num_lines),
_tasks (num_lines + 1),
_pipeflows (num_lines),
_buffer (num_lines) {
if(num_lines == 0) {
TF_THROW("must have at least one line");
}
if(std::get<0>(_pipes).type() != PipeType::SERIAL) {
TF_THROW("first pipe must be serial");
}
reset();
_build();
}
// constructor
template <typename... Ps>
DataPipeline<Ps...>::DataPipeline(size_t num_lines, std::tuple<Ps...>&& ps) :
_pipes {std::forward<std::tuple<Ps...>>(ps)},
_meta {_gen_meta(
std::forward<std::tuple<Ps...>>(ps), std::make_index_sequence<sizeof...(Ps)>{}
)},
_lines (num_lines),
_tasks (num_lines + 1),
_pipeflows (num_lines),
_buffer (num_lines) {
if(num_lines == 0) {
TF_THROW("must have at least one line");
}
if(std::get<0>(_pipes).type() != PipeType::SERIAL) {
TF_THROW("first pipe must be serial");
}
reset();
_build();
}
// Function: _get_meta
template <typename... Ps>
template <size_t... I>
auto DataPipeline<Ps...>::_gen_meta(std::tuple<Ps...>&& ps, std::index_sequence<I...>) {
return std::array{PipeMeta{std::get<I>(ps).type()}...};
}
// Function: num_lines
template <typename... Ps>
size_t DataPipeline<Ps...>::num_lines() const noexcept {
return _pipeflows.size();
}
// Function: num_pipes
template <typename... Ps>
constexpr size_t DataPipeline<Ps...>::num_pipes() const noexcept {
return sizeof...(Ps);
}
// Function: num_tokens
template <typename... Ps>
size_t DataPipeline<Ps...>::num_tokens() const noexcept {
return _num_tokens;
}
// Function: graph
template <typename... Ps>
Graph& DataPipeline<Ps...>::graph() {
return _graph;
}
// Function: reset
template <typename... Ps>
void DataPipeline<Ps...>::reset() {
_num_tokens = 0;
for(size_t l = 0; l<num_lines(); l++) {
_pipeflows[l]._pipe = 0;
_pipeflows[l]._line = l;
}
_lines[0][0].join_counter.store(0, std::memory_order_relaxed);
for(size_t l=1; l<num_lines(); l++) {
for(size_t f=1; f<num_pipes(); f++) {
_lines[l][f].join_counter.store(
static_cast<size_t>(_meta[f].type), std::memory_order_relaxed
);
}
}
for(size_t f=1; f<num_pipes(); f++) {
_lines[0][f].join_counter.store(1, std::memory_order_relaxed);
}
for(size_t l=1; l<num_lines(); l++) {
_lines[l][0].join_counter.store(
static_cast<size_t>(_meta[0].type) - 1, std::memory_order_relaxed
);
}
}
// Procedure: _on_pipe
template <typename... Ps>
void DataPipeline<Ps...>::_on_pipe(Pipeflow& pf, Runtime&) {
visit_tuple([&](auto&& pipe){
using data_pipe_t = std::decay_t<decltype(pipe)>;
using callable_t = typename data_pipe_t::callable_t;
using input_t = std::decay_t<typename data_pipe_t::input_t>;
using output_t = std::decay_t<typename data_pipe_t::output_t>;
// first pipe
if constexpr (std::is_invocable_v<callable_t, Pipeflow&>) {
// [](tf::Pipeflow&) -> void {}, i.e., we only have one pipe
if constexpr (std::is_void_v<output_t>) {
pipe._callable(pf);
// [](tf::Pipeflow&) -> output_t {}
} else {
_buffer[pf._line].data = pipe._callable(pf);
}
}
// other pipes without pipeflow in the second argument
else if constexpr (std::is_invocable_v<callable_t, std::add_lvalue_reference_t<input_t> >) {
// [](input_t&) -> void {}, i.e., the last pipe
if constexpr (std::is_void_v<output_t>) {
pipe._callable(std::get<input_t>(_buffer[pf._line].data));
// [](input_t&) -> output_t {}
} else {
_buffer[pf._line].data = pipe._callable(
std::get<input_t>(_buffer[pf._line].data)
);
}
}
// other pipes with pipeflow in the second argument
else if constexpr (std::is_invocable_v<callable_t, input_t&, Pipeflow&>) {
// [](input_t&, tf::Pipeflow&) -> void {}
if constexpr (std::is_void_v<output_t>) {
pipe._callable(std::get<input_t>(_buffer[pf._line].data), pf);
// [](input_t&, tf::Pipeflow&) -> output_t {}
} else {
_buffer[pf._line].data = pipe._callable(
std::get<input_t>(_buffer[pf._line].data), pf
);
}
}
//else if constexpr(std::is_invocable_v<callable_t, Pipeflow&, Runtime&>) {
// pipe._callable(pf, rt);
//}
else {
static_assert(dependent_false_v<callable_t>, "un-supported pipe callable type");
}
}, _pipes, pf._pipe);
}
// Procedure: _build
template <typename... Ps>
void DataPipeline<Ps...>::_build() {
using namespace std::literals::string_literals;
FlowBuilder fb(_graph);
// init task
_tasks[0] = fb.emplace([this]() {
return static_cast<int>(_num_tokens % num_lines());
}).name("cond");
// line task
for(size_t l = 0; l < num_lines(); l++) {
_tasks[l + 1] = fb.emplace([this, l] (tf::Runtime& rt) mutable {
auto pf = &_pipeflows[l];
pipeline:
_lines[pf->_line][pf->_pipe].join_counter.store(
static_cast<size_t>(_meta[pf->_pipe].type), std::memory_order_relaxed
);
if (pf->_pipe == 0) {
pf->_token = _num_tokens;
if (pf->_stop = false, _on_pipe(*pf, rt); pf->_stop == true) {
// here, the pipeline is not stopped yet because other
// lines of tasks may still be running their last stages
return;
}
++_num_tokens;
}
else {
_on_pipe(*pf, rt);
}
size_t c_f = pf->_pipe;
size_t n_f = (pf->_pipe + 1) % num_pipes();
size_t n_l = (pf->_line + 1) % num_lines();
pf->_pipe = n_f;
// ---- scheduling starts here ----
// Notice that the shared variable f must not be changed after this
// point because it can result in data race due to the following
// condition:
//
// a -> b
// | |
// v v
// c -> d
//
// d will be spawned by either c or b, so if c changes f but b spawns d
// then data race on f will happen
std::array<int, 2> retval;
size_t n = 0;
// downward dependency
if(_meta[c_f].type == PipeType::SERIAL &&
_lines[n_l][c_f].join_counter.fetch_sub(
1, std::memory_order_acq_rel) == 1
) {
retval[n++] = 1;
}
// forward dependency
if(_lines[pf->_line][n_f].join_counter.fetch_sub(
1, std::memory_order_acq_rel) == 1
) {
retval[n++] = 0;
}
// notice that the task index starts from 1
switch(n) {
case 2: {
rt.schedule(_tasks[n_l+1]);
goto pipeline;
}
case 1: {
if (retval[0] == 1) {
pf = &_pipeflows[n_l];
}
goto pipeline;
}
}
}).name("rt-"s + std::to_string(l));
_tasks[0].precede(_tasks[l+1]);
}
}
} // end of namespace tf -----------------------------------------------------