mesytec-mnode/external/taskflow-3.8.0/doxygen/cudaflow_algorithms/cudaflow_merge.dox
2025-01-04 01:25:05 +01:00

102 lines
2.7 KiB
Text

namespace tf {
/** @page cudaFlowMerge Parallel Merge
%cudaFlow provides template methods to create parallel merge tasks
on a CUDA GPU.
@tableofcontents
@section CUDAParallelMergeIncludeTheHeader Include the Header
You need to include the header file, `%taskflow/cuda/algorithm/merge.hpp`,
for creating a parallel-merge task.
@section cudaFlowMergeTwoRangesOfItems Merge two Sorted Ranges of Items
tf::cudaFlow::merge performs a parallel merge over two ranges of elements
into a sorted range of items.
The following code merges two sorted arrays @c input_1 and @c input_2,
each of 1000 items, into a sorted array @c output of 2000 items.
@code{.cpp}
const size_t N = 1000;
int* input_1 = tf::cuda_malloc_shared<int>(N); // input vector 1
int* input_2 = tf::cuda_malloc_shared<int>(N); // input vector 2
int* output = tf::cuda_malloc_shared<int>(2*N); // output vector
// initializes the data
for(size_t i=0; i<N; i++) {
input_1[i] = rand()%100;
input_2[i] = rand()%100;
}
std::sort(input_1, input1 + N);
std::sort(input_2, input2 + N);
// merge input_1 and input_2 to output
tf::cudaFlow cf;
tf::cudaTask task = cf.merge(
input_1, input_1 + N, input_2, input_2 + N, output,
[]__device__ (int a, int b) { return a < b; } // comparator
);
cf.offload();
@endcode
@section cudaFlowMergeTwoRangesOfKeyValueItems Merge two Sorted Ranges of Key-Value Items
tf::cudaFlow::merge_by_key performs key-value merge over two sorted ranges
in a similar way to tf::cuda_merge; additionally, it copies elements
from the two ranges of values associated with two input keys, respectively.
The following code performs key-value merge over @c a and @c b:
@code{.cpp}
const size_t N = 2;
int* a_keys = tf::cuda_malloc_shared<int>(N);
int* a_vals = tf::cuda_malloc_shared<int>(N);
int* b_keys = tf::cuda_malloc_shared<int>(N);
int* b_vals = tf::cuda_malloc_shared<int>(N);
int* c_keys = tf::cuda_malloc_shared<int>(2*N);
int* c_vals = tf::cuda_malloc_shared<int>(2*N);
// initializes the data
a_keys[0] = 8, a_keys[1] = 1;
a_vals[0] = 1, a_vals[1] = 2;
b_keys[0] = 3, b_keys[1] = 7;
b_vals[0] = 3, b_vals[1] = 4;
// performs key-value merge
tf::cudaFlow cf;
cf.merge_by_key(
a_keys, a_keys+N, a_vals,
b_keys, b_keys+N, b_vals,
c_keys, c_vals,
[] __device__ (int a, int b) { return a < b; },
);
cf.offload();
// now, c_keys = {1, 3, 7, 8}
// now, c_vals = {2, 3, 4, 1}
// delete the device memory
tf::cuda_free(buffer);
tf::cuda_free(a_keys);
tf::cuda_free(b_keys);
tf::cuda_free(c_keys);
tf::cuda_free(a_vals);
tf::cuda_free(b_vals);
tf::cuda_free(c_vals);
@endcode
@section cudaFlowMergeMiscellaneousItems Miscellaneous Items
Parallel merge algorithms are also available in tf::cudaFlowCapturer
with the same API.
*/
}