247 lines
9.3 KiB
C++
247 lines
9.3 KiB
C++
#include <taskflow/taskflow.hpp>
|
|
#include "strassen.hpp"
|
|
|
|
void OptimizedStrassenMultiply_tf(
|
|
REAL *C, REAL *A, REAL *B, unsigned MatrixSize,
|
|
unsigned RowWidthC, unsigned RowWidthA, unsigned RowWidthB, int Depth, tf::Subflow& subflow)
|
|
{
|
|
unsigned QuadrantSize = MatrixSize >> 1; /* MatixSize / 2 */
|
|
unsigned QuadrantSizeInBytes = sizeof(REAL) * QuadrantSize * QuadrantSize + 32;
|
|
unsigned Column, Row;
|
|
|
|
/************************************************************************
|
|
** For each matrix A, B, and C, we'll want pointers to each quandrant
|
|
** in the matrix. These quandrants will be addressed as follows:
|
|
** -- --
|
|
** | A11 A12 |
|
|
** | |
|
|
** | A21 A22 |
|
|
** -- --
|
|
************************************************************************/
|
|
REAL /* *A11, *B11, *C11, */ *A12, *B12, *C12,
|
|
*A21, *B21, *C21, *A22, *B22, *C22;
|
|
|
|
REAL *S1,*S2,*S3,*S4,*S5,*S6,*S7,*S8,*M2,*M5,*T1sMULT;
|
|
#define T2sMULT C22
|
|
#define NumberOfVariables 11
|
|
|
|
PTR TempMatrixOffset = 0;
|
|
PTR MatrixOffsetA = 0;
|
|
PTR MatrixOffsetB = 0;
|
|
|
|
char *Heap;
|
|
void *StartHeap;
|
|
|
|
/* Distance between the end of a matrix row and the start of the next row */
|
|
PTR RowIncrementA = ( RowWidthA - QuadrantSize ) << 3;
|
|
PTR RowIncrementB = ( RowWidthB - QuadrantSize ) << 3;
|
|
PTR RowIncrementC = ( RowWidthC - QuadrantSize ) << 3;
|
|
|
|
if (MatrixSize <= CUTOFF_SIZE) {
|
|
MultiplyByDivideAndConquer(C, A, B, MatrixSize, RowWidthC, RowWidthA, RowWidthB, 0);
|
|
return;
|
|
}
|
|
|
|
/* Initialize quandrant matrices */
|
|
#define A11 A
|
|
#define B11 B
|
|
#define C11 C
|
|
A12 = A11 + QuadrantSize;
|
|
B12 = B11 + QuadrantSize;
|
|
C12 = C11 + QuadrantSize;
|
|
A21 = A + (RowWidthA * QuadrantSize);
|
|
B21 = B + (RowWidthB * QuadrantSize);
|
|
C21 = C + (RowWidthC * QuadrantSize);
|
|
A22 = A21 + QuadrantSize;
|
|
B22 = B21 + QuadrantSize;
|
|
C22 = C21 + QuadrantSize;
|
|
|
|
/* Allocate Heap Space Here */
|
|
Heap = static_cast<char*>(malloc(QuadrantSizeInBytes * NumberOfVariables));
|
|
StartHeap = Heap;
|
|
|
|
/* ensure that heap is on cache boundary */
|
|
if ( ((PTR) Heap) & 31)
|
|
Heap = (char*) ( ((PTR) Heap) + 32 - ( ((PTR) Heap) & 31) );
|
|
|
|
/* Distribute the heap space over the variables */
|
|
S1 = (REAL*) Heap; Heap += QuadrantSizeInBytes;
|
|
S2 = (REAL*) Heap; Heap += QuadrantSizeInBytes;
|
|
S3 = (REAL*) Heap; Heap += QuadrantSizeInBytes;
|
|
S4 = (REAL*) Heap; Heap += QuadrantSizeInBytes;
|
|
S5 = (REAL*) Heap; Heap += QuadrantSizeInBytes;
|
|
S6 = (REAL*) Heap; Heap += QuadrantSizeInBytes;
|
|
S7 = (REAL*) Heap; Heap += QuadrantSizeInBytes;
|
|
S8 = (REAL*) Heap; Heap += QuadrantSizeInBytes;
|
|
M2 = (REAL*) Heap; Heap += QuadrantSizeInBytes;
|
|
M5 = (REAL*) Heap; Heap += QuadrantSizeInBytes;
|
|
T1sMULT = (REAL*) Heap; Heap += QuadrantSizeInBytes;
|
|
|
|
/***************************************************************************
|
|
** Step through all columns row by row (vertically)
|
|
** (jumps in memory by RowWidth => bad locality)
|
|
** (but we want the best locality on the innermost loop)
|
|
***************************************************************************/
|
|
for (Row = 0; Row < QuadrantSize; Row++) {
|
|
|
|
/*************************************************************************
|
|
** Step through each row horizontally (addressing elements in each column)
|
|
** (jumps linearly througn memory => good locality)
|
|
*************************************************************************/
|
|
for (Column = 0; Column < QuadrantSize; Column++) {
|
|
|
|
/***********************************************************
|
|
** Within this loop, the following holds for MatrixOffset:
|
|
** MatrixOffset = (Row * RowWidth) + Column
|
|
** (note: that the unit of the offset is number of reals)
|
|
***********************************************************/
|
|
/* Element of Global Matrix, such as A, B, C */
|
|
#define E(Matrix) (* (REAL*) ( ((PTR) Matrix) + TempMatrixOffset ) )
|
|
#define EA(Matrix) (* (REAL*) ( ((PTR) Matrix) + MatrixOffsetA ) )
|
|
#define EB(Matrix) (* (REAL*) ( ((PTR) Matrix) + MatrixOffsetB ) )
|
|
|
|
/* FIXME - may pay to expand these out - got higher speed-ups below */
|
|
/* S4 = A12 - ( S2 = ( S1 = A21 + A22 ) - A11 ) */
|
|
E(S4) = EA(A12) - ( E(S2) = ( E(S1) = EA(A21) + EA(A22) ) - EA(A11) );
|
|
|
|
/* S8 = (S6 = B22 - ( S5 = B12 - B11 ) ) - B21 */
|
|
E(S8) = ( E(S6) = EB(B22) - ( E(S5) = EB(B12) - EB(B11) ) ) - EB(B21);
|
|
|
|
/* S3 = A11 - A21 */
|
|
E(S3) = EA(A11) - EA(A21);
|
|
|
|
/* S7 = B22 - B12 */
|
|
E(S7) = EB(B22) - EB(B12);
|
|
|
|
TempMatrixOffset += sizeof(REAL);
|
|
MatrixOffsetA += sizeof(REAL);
|
|
MatrixOffsetB += sizeof(REAL);
|
|
} /* end row loop*/
|
|
|
|
MatrixOffsetA += RowIncrementA;
|
|
MatrixOffsetB += RowIncrementB;
|
|
} /* end column loop */
|
|
|
|
std::vector<tf::Task> tasks;
|
|
|
|
/* M2 = A11 x B11 */
|
|
tasks.emplace_back(subflow.emplace([=](auto& subflow) {
|
|
OptimizedStrassenMultiply_tf(M2, A11, B11, QuadrantSize, QuadrantSize, RowWidthA, RowWidthB, Depth+1, subflow);
|
|
}));
|
|
|
|
/* M5 = S1 * S5 */
|
|
tasks.emplace_back(subflow.emplace([=](auto &subflow) {
|
|
OptimizedStrassenMultiply_tf(M5, S1, S5, QuadrantSize, QuadrantSize, QuadrantSize, QuadrantSize, Depth+1, subflow);
|
|
}));
|
|
|
|
/* Step 1 of T1 = S2 x S6 + M2 */
|
|
tasks.emplace_back(subflow.emplace([=](auto& subflow){
|
|
OptimizedStrassenMultiply_tf(T1sMULT, S2, S6, QuadrantSize, QuadrantSize, QuadrantSize, QuadrantSize, Depth+1, subflow);
|
|
}));
|
|
|
|
/* Step 1 of T2 = T1 + S3 x S7 */
|
|
tasks.emplace_back(subflow.emplace([=](auto &subflow){
|
|
OptimizedStrassenMultiply_tf(C22, S3, S7, QuadrantSize, RowWidthC /*FIXME*/, QuadrantSize, QuadrantSize, Depth+1, subflow);
|
|
}));
|
|
|
|
/* Step 1 of C11 = M2 + A12 * B21 */
|
|
tasks.emplace_back(subflow.emplace([=](auto &subflow){
|
|
OptimizedStrassenMultiply_tf(C11, A12, B21, QuadrantSize, RowWidthC, RowWidthA, RowWidthB, Depth+1, subflow);
|
|
}));
|
|
|
|
/* Step 1 of C12 = S4 x B22 + T1 + M5 */
|
|
tasks.emplace_back(subflow.emplace([=](auto &subflow){
|
|
OptimizedStrassenMultiply_tf(C12, S4, B22, QuadrantSize, RowWidthC, QuadrantSize, RowWidthB, Depth+1, subflow);
|
|
}));
|
|
|
|
/* Step 1 of C21 = T2 - A22 * S8 */
|
|
tasks.emplace_back(subflow.emplace([=](auto &subflow){
|
|
OptimizedStrassenMultiply_tf(C21, A22, S8, QuadrantSize, RowWidthC, RowWidthA, QuadrantSize, Depth+1, subflow);
|
|
}));
|
|
|
|
/**********************************************
|
|
** Synchronization Point
|
|
**********************************************/
|
|
/***************************************************************************
|
|
** Step through all columns row by row (vertically)
|
|
** (jumps in memory by RowWidth => bad locality)
|
|
** (but we want the best locality on the innermost loop)
|
|
***************************************************************************/
|
|
|
|
auto end_task = subflow.emplace([=]() mutable {
|
|
for (auto Row = 0u; Row < QuadrantSize; Row++) {
|
|
/*************************************************************************
|
|
** Step through each row horizontally (addressing elements in each column)
|
|
** (jumps linearly througn memory => good locality)
|
|
*************************************************************************/
|
|
for (auto Column = 0u; Column < QuadrantSize; Column += 4) {
|
|
REAL LocalM5_0 = *(M5);
|
|
REAL LocalM5_1 = *(M5+1);
|
|
REAL LocalM5_2 = *(M5+2);
|
|
REAL LocalM5_3 = *(M5+3);
|
|
REAL LocalM2_0 = *(M2);
|
|
REAL LocalM2_1 = *(M2+1);
|
|
REAL LocalM2_2 = *(M2+2);
|
|
REAL LocalM2_3 = *(M2+3);
|
|
REAL T1_0 = *(T1sMULT) + LocalM2_0;
|
|
REAL T1_1 = *(T1sMULT+1) + LocalM2_1;
|
|
REAL T1_2 = *(T1sMULT+2) + LocalM2_2;
|
|
REAL T1_3 = *(T1sMULT+3) + LocalM2_3;
|
|
REAL T2_0 = *(C22) + T1_0;
|
|
REAL T2_1 = *(C22+1) + T1_1;
|
|
REAL T2_2 = *(C22+2) + T1_2;
|
|
REAL T2_3 = *(C22+3) + T1_3;
|
|
(*(C11)) += LocalM2_0;
|
|
(*(C11+1)) += LocalM2_1;
|
|
(*(C11+2)) += LocalM2_2;
|
|
(*(C11+3)) += LocalM2_3;
|
|
(*(C12)) += LocalM5_0 + T1_0;
|
|
(*(C12+1)) += LocalM5_1 + T1_1;
|
|
(*(C12+2)) += LocalM5_2 + T1_2;
|
|
(*(C12+3)) += LocalM5_3 + T1_3;
|
|
(*(C22)) = LocalM5_0 + T2_0;
|
|
(*(C22+1)) = LocalM5_1 + T2_1;
|
|
(*(C22+2)) = LocalM5_2 + T2_2;
|
|
(*(C22+3)) = LocalM5_3 + T2_3;
|
|
(*(C21 )) = (- *(C21 )) + T2_0;
|
|
(*(C21+1)) = (- *(C21+1)) + T2_1;
|
|
(*(C21+2)) = (- *(C21+2)) + T2_2;
|
|
(*(C21+3)) = (- *(C21+3)) + T2_3;
|
|
M5 += 4;
|
|
M2 += 4;
|
|
T1sMULT += 4;
|
|
C11 += 4;
|
|
C12 += 4;
|
|
C21 += 4;
|
|
C22 += 4;
|
|
}
|
|
C11 = (REAL*) ( ((PTR) C11 ) + RowIncrementC);
|
|
C12 = (REAL*) ( ((PTR) C12 ) + RowIncrementC);
|
|
C21 = (REAL*) ( ((PTR) C21 ) + RowIncrementC);
|
|
C22 = (REAL*) ( ((PTR) C22 ) + RowIncrementC);
|
|
}
|
|
free(StartHeap);
|
|
});
|
|
|
|
end_task.gather(tasks);
|
|
}
|
|
|
|
void strassen_taskflow(unsigned num_threads, REAL *A, REAL *B, REAL *C, int n) {
|
|
tf::Taskflow flow;
|
|
|
|
flow.emplace(
|
|
[=](auto &subflow) {
|
|
OptimizedStrassenMultiply_tf(C, A, B, n, n, n, n, 1, subflow);
|
|
}
|
|
);
|
|
|
|
tf::Executor(num_threads).run(flow).wait();
|
|
}
|
|
|
|
std::chrono::microseconds measure_time_taskflow(unsigned num_threads, REAL *A, REAL *B, REAL *C, int n) {
|
|
auto beg = std::chrono::high_resolution_clock::now();
|
|
strassen_taskflow(num_threads, A, B, C, n);
|
|
auto end = std::chrono::high_resolution_clock::now();
|
|
return std::chrono::duration_cast<std::chrono::microseconds>(end - beg);
|
|
}
|
|
|