mesytec-mnode/external/taskflow-3.8.0/doxygen/examples/taskflow_pipeline.dox
2025-01-04 01:25:05 +01:00

334 lines
7.9 KiB
Text

namespace tf {
/** @page TaskflowProcessingPipeline Taskflow Processing Pipeline
We study a taskflow processing pipeline that propagates a sequence of tokens through
linearly dependent taskflows.
The pipeline embeds a taskflow in each pipe to run a parallel algorithm using
task graph parallelism.
@tableofcontents
@section FormulateTheTaskflowProcessingPipelineProblem Formulate the Taskflow Processing Pipeline Problem
Many complex and irregular pipeline applications require each pipe to run a parallel algorithm
using task graph parallelism.
We can formulate such applications as scheduling a sequence of tokens through
linearly dependent taskflows.
The following example illustrates the pipeline propagation of three scheduling tokens
through three linearly dependent taskflows:
@dotfile images/taskflow_processing_pipeline_2.dot
@dotfile images/taskflow_processing_pipeline_1.dot
Each pipe (stage) in the pipeline embeds a taskflow to perform a stage-specific parallel algorithm
on an input scheduling token.
Parallelism exhibits both inside and outside the three taskflows, combining both
<i>task graph parallelism</i> and <i>pipeline parallelism</i>.
@section CreateATaskflowProcessingPipeline Create a Taskflow Processing Pipeline
Using the example from the previous section, we create a pipeline of three @em serial pipes
each running a taskflow on a sequence of five scheduling tokens.
The overall implementation is shown below:
@code{.cpp}
#include <taskflow/taskflow.hpp>
#include <taskflow/algorithm/pipeline.hpp>
// taskflow on the first pipe
void make_taskflow1(tf::Taskflow& tf) {
auto [A1, B1, C1, D1] = tf.emplace(
[](){ printf("A1\n"); },
[](){ printf("B1\n"); },
[](){ printf("C1\n"); },
[](){ printf("D1\n"); }
);
A1.precede(B1, C1);
D1.succeed(B1, C1);
}
// taskflow on the second pipe
void make_taskflow2(tf::Taskflow& tf) {
auto [A2, B2, C2, D2] = tf.emplace(
[](){ printf("A2\n"); },
[](){ printf("B2\n"); },
[](){ printf("C2\n"); },
[](){ printf("D2\n"); }
);
tf.linearize({A2, B2, C2, D2});
}
// taskflow on the third pipe
void make_taskflow3(tf::Taskflow& tf) {
auto [A3, B3, C3, D3] = tf.emplace(
[](){ printf("A3\n"); },
[](){ printf("B3\n"); },
[](){ printf("C3\n"); },
[](){ printf("D3\n"); }
);
A3.precede(B3, C3, D3);
}
int main() {
tf::Taskflow taskflow("taskflow processing pipeline");
tf::Executor executor;
const size_t num_lines = 2;
const size_t num_pipes = 3;
// define the taskflow storage
// we use the pipe dimension because we create three 'serial' pipes
std::array<tf::Taskflow, num_pipes> taskflows;
// create three different taskflows for the three pipes
make_taskflow1(taskflows[0]);
make_taskflow2(taskflows[1]);
make_taskflow3(taskflows[2]);
// the pipeline consists of three serial pipes
// and up to two concurrent scheduling tokens
tf::Pipeline pl(num_lines,
// first pipe runs taskflow1
tf::Pipe{tf::PipeType::SERIAL, [&](tf::Pipeflow& pf) {
if(pf.token() == 5) {
pf.stop();
return;
}
printf("begin token %zu\n", pf.token());
executor.corun(taskflows[pf.pipe()]);
}},
// second pipe runs taskflow2
tf::Pipe{tf::PipeType::SERIAL, [&](tf::Pipeflow& pf) {
executor.corun(taskflows[pf.pipe()]);
}},
// third pipe calls taskflow3
tf::Pipe{tf::PipeType::SERIAL, [&](tf::Pipeflow& pf) {
executor.corun(taskflows[pf.pipe()]);
}}
);
// build the pipeline graph using composition
tf::Task init = taskflow.emplace([](){ std::cout << "ready\n"; })
.name("starting pipeline");
tf::Task task = taskflow.composed_of(pl)
.name("pipeline");
tf::Task stop = taskflow.emplace([](){ std::cout << "stopped\n"; })
.name("pipeline stopped");
// create task dependency
init.precede(task);
task.precede(stop);
// dump the pipeline graph structure (with composition)
taskflow.dump(std::cout);
// run the pipeline
executor.run(taskflow).wait();
return 0;
}
@endcode
@subsection TaskflowPipelineDefineTaskflows Define Taskflows
First, we define three taskflows for the three pipes in the pipeline:
@code{.cpp}
// taskflow on the first pipe
void make_taskflow1(tf::Taskflow& tf) {
auto [A1, B1, C1, D1] = tf.emplace(
[](){ printf("A1\n"); },
[](){ printf("B1\n"); },
[](){ printf("C1\n"); },
[](){ printf("D1\n"); }
);
A1.precede(B1, C1);
D1.succeed(B1, C1);
}
// taskflow on the second pipe
void make_taskflow2(tf::Taskflow& tf) {
auto [A2, B2, C2, D2] = tf.emplace(
[](){ printf("A2\n"); },
[](){ printf("B2\n"); },
[](){ printf("C2\n"); },
[](){ printf("D2\n"); }
);
tf.linearize({A2, B2, C2, D2});
}
// taskflow on the third pipe
void make_taskflow3(tf::Taskflow& tf) {
auto [A3, B3, C3, D3] = tf.emplace(
[](){ printf("A3\n"); },
[](){ printf("B3\n"); },
[](){ printf("C3\n"); },
[](){ printf("D3\n"); }
);
A3.precede(B3, C3, D3);
}
@endcode
As each taskflow corresponds to a pipe in the pipeline, we create a linear
array to store the three taskflows:
@code{.cpp}
std::array<tf::Taskflow, num_pipes> taskflows;
make_taskflow1(taskflows[0]);
make_taskflow2(taskflows[1]);
make_taskflow3(taskflows[2]);
@endcode
Since the three taskflows are linearly dependent, at most one taskflow will run at a pipe.
We can store the three taskflows in a linear array of dimension
equal to the number of pipes.
If there is a parallel pipe, we need to use two-dimensional array,
as multiple taskflows at a stage can run simultaneously across parallel lines.
@subsection TaskflowPipelineDefineThePipes Define the Pipes
The pipe definition is straightforward. Each pipe runs the corresponding taskflow,
which can be indexed at `taskflows` with the pipe's identifier,
tf::Pipeflow::pipe().
The first pipe will cease the pipeline scheduling when it has processed
five scheduling tokens:
@code{.cpp}
// first pipe runs taskflow1
tf::Pipe{tf::PipeType::SERIAL, [&](tf::Pipeflow& pf) {
if(pf.token() == 5) {
pf.stop();
return;
}
printf("begin token %zu\n", pf.token());
executor.corun(taskflows[pf.pipe()]);
}},
// second pipe runs taskflow2
tf::Pipe{tf::PipeType::SERIAL, [&](tf::Pipeflow& pf) {
executor.corun(taskflows[pf.pipe()]);
}},
// third pipe calls taskflow3
tf::Pipe{tf::PipeType::SERIAL, [&](tf::Pipeflow& pf) {
executor.corun(taskflows[pf.pipe()]);
}}
@endcode
At each pipe, we use tf::Executor::corun to execute the corresponding taskflow
and wait until the execution completes.
This is important because we want the caller thread, which is the worker that invokes
the pipe callable, to not block (i.e., `executor.run(taskflows[pf.pipe()]).wait()`)
but participate in the work-stealing loop of the scheduler to avoid deadlock.
@subsection TaskflowPipelineDefineTheTaskGraph Define the Task Graph
To build up the taskflow for the pipeline,
we create a module task with the defined pipeline structure and connect it with
two tasks that output helper messages before and after the pipeline:
@code{.cpp}
tf::Task init = taskflow.emplace([](){ std::cout << "ready\n"; })
.name("starting pipeline");
tf::Task task = taskflow.composed_of(pl)
.name("pipeline");
tf::Task stop = taskflow.emplace([](){ std::cout << "stopped\n"; })
.name("pipeline stopped");
init.precede(task);
task.precede(stop);
@endcode
@dotfile images/taskflow_processing_pipeline_3.dot
@subsection TaskflowPipelineSubmitTheTaskGraph Submit the Task Graph
Finally, we submit the taskflow to the execution and run it once:
@code{.cpp}
executor.run(taskflow).wait();
@endcode
One possible output is shown below:
@code{.shell-session}
ready
begin token 0
A1
C1
B1
D1
begin token 1
A2
B2
A1
C1
B1
D1
C2
D2
A3
D3
C3
B3
begin token 2
A2
B2
C2
D2
A1
C1
B1
D1
A3
D3
C3
B3
A2
B2
C2
D2
begin token 3
A3
D3
C3
B3
A1
C1
B1
D1
begin token 4
A2
A1
C1
B1
D1
B2
C2
D2
A3
D3
C3
B3
A2
B2
C2
D2
A3
D3
C3
B3
stopped
@endcode
*/
}