mesytec-mnode/external/taskflow-3.8.0/doxygen/cookbook/gpu_tasking_syclflow.dox
2025-01-04 01:25:05 +01:00

324 lines
11 KiB
Text

namespace tf {
/** @page GPUTaskingsyclFlow GPU Tasking (%syclFlow)
%Taskflow supports SYCL, a general-purpose heterogeneous programming model,
to program heterogeneous tasks in a single-source C++ environment.
This chapter discusses how to write SYCL C++ kernel code with %Taskflow
based on @sycl20_spec.
@tableofcontents
@section GPUTaskingsyclFlowIncludeTheHeader Include the Header
You need to include the header file, `%taskflow/sycl/syclflow.hpp`,
for using tf::syclFlow.
@section Create_a_syclFlow Create a syclFlow
%Taskflow introduces a task graph-based programming model,
tf::syclFlow, to program SYCL tasks and their dependencies.
A %syclFlow is a task in a taskflow and is associated with a
SYCL queue to execute kernels on a SYCL device.
To create a %syclFlow task, emplace a callable with an argument of type tf::syclFlow
and associate it with a SYCL queue.
The following example (@c saxpy.cpp) implements the canonical
saxpy (A·X Plus Y) task graph
using tf::syclFlow.
@code{.cpp}
1: #include <taskflow/syclflow.hpp>
2:
3: constexpr size_t N = 1000000;
4:
5: int main() {
6:
7: tf::Executor executor;
8: tf::Taskflow taskflow("saxpy example");
9:
10: sycl::queue queue{sycl::gpu_selector{}};
11:
12: // allocate shared memory that is accessible on both host and device
13: float* X = sycl::malloc_shared<float>(N, queue);
14: float* Y = sycl::malloc_shared<float>(N, queue);
15:
16: // create a syclFlow to perform the saxpy operation
17: taskflow.emplace_on([&](tf::syclFlow& sf){
18: tf::syclTask fillX = sf.fill(X, 1.0f, N).name("fillX");
19: tf::syclTask fillY = sf.fill(Y, 2.0f, N).name("fillY");
20: tf::syclTask saxpy = sf.parallel_for(sycl::range<1>(N),
21: [=] (sycl::id<1> id) {
22: X[id] = 3.0f * X[id] + Y[id];
23: }
24: ).name("saxpy");
25: saxpy.succeed(fillX, fillY);
26: }, queue).name("syclFlow");
27:
28: executor.run(taskflow).wait(); // run the taskflow
29: taskflow.dump(std::cout); // dump the taskflow
30:
31: // free the shared memory to avoid memory leak
32: sycl::free(X, queue);
33: sycl::free(Y, queue);
34: }
@endcode
@dotfile images/syclflow_saxpy.dot
Debrief:
@li Lines 7-8 create a taskflow and an executor
@li Lines 10 creates a SYCL queue on a default-selected GPU device
@li Lines 13-14 allocate shared memory that is accessible on both host and device
@li Lines 17-26 creates a %syclFlow to define the saxpy task graph that contains:
+ one fill task to fill the memory area @c X with @c 1.0f
+ one fill task to fill the memory area @c Y with @c 2.0f
+ one kernel task to perform the saxpy operation on the GPU
@li Lines 28-29 executes the taskflow and dumps its graph to a DOT format
@li Lines 32-33 deallocates the shared memory to avoid memory leak
tf::syclFlow is a lightweight task graph-based programming layer atop SYCL.
We do not expend yet another effort on simplifying kernel programming
but focus on tasking SYCL operations and their dependencies.
This organization lets users fully take advantage of SYCL features
that are commensurate with their domain knowledge,
while leaving difficult task parallelism details to %Taskflow.
@section Compile_a_syclFlow_program Compile a syclFlow Program
Use DPC++ clang to compile a %syclFlow program:
@code{.shell-session}
~$ clang++ -fsycl -fsycl-unnamed-lambda \
-fsycl-targets=nvptx64-nvidia-cuda \ # for CUDA target
-I path/to/taskflow -pthread -std=c++17 saxpy.cpp -o saxpy
~$ ./saxpy
@endcode
Please visit the page @ref CompileTaskflowWithSYCL for more details.
@section CreateMemoryOperationTasks Create Memory Operation Tasks
tf::syclFlow provides a set of methods for creating tasks to perform common
memory operations, such as copy, set, and fill,
on memory area pointed to by <i>unified shared memory</i> (USM) pointers.
The following example creates a %syclFlow task of two copy operations
and one fill operation that set the first @c N/2 elements in the vector to @c -1.
@code{.cpp}
sycl::queue queue;
size_t N = 1000;
int* hvec = new int[N] (100);
int* dvec = sycl::malloc_device<int>(N, queue);
// create a syclflow task to set the first N/2 elements to -1
taskflow.emplace_on([&](tf::syclFlow& syclflow){
tf::syclTask ch2d = syclflow.copy(dvec, hvec, N);
tf::syclTask fill = syclflow.fill(dvec, -1, N/2);
tf::syclTask cd2h = syclflow.copy(hvec, dvec, N);
fill.precede(cd2h)
.succeed(ch2d);
}, queue);
executor.run(taskflow).wait();
// inspect the result
for(size_t i=0; i<N/2; i++) {
(i < N / 2) ? assert(hvec[i] == -1) : assert(hvec[i] == 100);
}
@endcode
Both tf::syclFlow::copy and tf::syclFlow::fill operate on @c typed data.
You can use tf::syclFlow::memcpy and tf::syclFlow::memset to operate
on @c untyped data (i.e., array of bytes).
@code{.cpp}
taskflow.emplace_on([&](tf::syclFlow& syclflow){
tf::syclTask ch2d = syclflow.memcpy(dvec, hvec, N*sizeof(int));
tf::syclTask mset = syclflow.memset(dvec, -1, N/2*sizeof(int));
tf::syclTask cd2h = syclflow.memcpy(hvec, dvec, N*sizeof(int));
fill.precede(cd2h)
.succeed(ch2d);
}, queue);
@endcode
@section CreateKernelTasks Create Kernel Tasks
SYCL allows a simple execution model in which a kernel is invoked over
an N-dimensional index space defined by @c sycl::range<N>,
where @c N is one, two or three.
Each work item in such a kernel executes independently
across a set of partitioned work groups.
tf::syclFlow::parallel_for defines several variants to create a kernel task.
The following variant pairs up a @c sycl::range and a @c sycl::id
to set each element in @c data to @c 1.0f
when it is not necessary to query the global range of the index space
being executed across.
@code{.cpp}
tf::syclTask task = syclflow.parallel_for(
sycl::range<1>(N), [data](sycl::id<1> id){ data[id] = 1.0f; }
);
@endcode
As the same example,
the following variant enables low-level functionality of
work items and work groups
using @c sycl::nd_range and @c sycl::nd_item.
This becomes valuable when an execution requires groups of work items
that communicate and synchronize.
@code{.cpp}
// partition the N-element range to N/M work groups each of M work items
tf::syclTask task = syclflow.parallel_for(
sycl::nd_range<1>{sycl::range<1>(N), sycl::range<1>(M)},
[data](sycl::nd_item<1> item){
auto id = item.get_global_linear_id();
data[id] = 1.0f;
// query detailed work group information
// item.get_group_linear_id();
// item.get_local_linear_id();
// ...
}
);
@endcode
All the kernel methods defined in the SYCL queue
are applicable for tf::syclFlow::parallel_for.
@section CreateCommandGroupFunctionObjectTasks Create Command Group Function Object Tasks
SYCL provides a way to encapsulate a device-side operation and all its
data and event dependencies in a single <i>command group function object</i>.
The function object accepts an argument of
command group @em handler constructed by the SYCL runtime.
Command group handler is the heart of SYCL programming as it defines
pretty much all kernel-related methods,
including submission, execution, and synchronization.
You can directly create a SYCL task from a command group function object
using tf::syclFlow::on.
@code{.cpp}
tf::syclTask task = syclflow.on(
[=] (sycl::handler& handler) {
handler.require(accessor);
handler.single_task([=](){ // place a single-threaded kernel function
data[0] = 1;
);
}
);
@endcode
@section OffloadAsyclFlow Offload a syclFlow
By default, the executor offloads and executes the %syclFlow once.
When a %syclFlow is being executed, its task graph will be materialized
by the %Taskflow runtime and submitted to its associated SYCL queue
in a topological order of task dependencies defined in that graph.
You can explicitly execute a %syclFlow using different offload methods:
@code{.cpp}
taskflow.emplace_on([](tf::syclFlow& sf) {
// ... create SYCL tasks
sf.offload(); // offload the syclFlow and run it once
sf.offload_n(10); // offload the syclFlow and run it 10 times
sf.offload_until([repeat=5] () mutable { return repeat-- == 0; }) // five times
}, queue);
@endcode
After you offload a %syclFlow,
it is considered executed, and the executor will @em not run an offloaded %syclFlow
after leaving the %syclFlow task callable.
On the other hand, if a %syclFlow is not offloaded,
the executor runs it once.
For example, the following two versions represent the same execution logic.
@code{.cpp}
// version 1: explicitly offload a syclFlow once
taskflow.emplace_on([](tf::syclFlow& sf) {
sf.single_task([](){});
sf.offload();
}, queue);
// version 2 (same as version 1): executor offloads the syclFlow once
taskflow.emplace_on([](tf::syclFlow& sf) {
sf.single_task([](){});
}, queue);
@endcode
@section UpdateAsyclFlow Update a syclFlow
You can update a SYCL task from an offloaded %syclFlow and @em rebind it to another
task type.
For example, you can rebind a memory operation task to a parallel-for kernel
task from an offloaded %syclFlow and vice versa.
@code{.cpp}
size_t N = 10000;
sycl::queue queue;
int* data = sycl::malloc_shared<int>(N, queue);
taskflow.emplace_on([&](tf::syclFlow& syclflow){
// create a task to set each element to -1
tf::syclTask task = syclflow.fill(data, -1, N);
syclflow.offload();
std::for_each(data, data+N, [](int i){ assert(data[i] == -1); });
// rebind the task to a parallel-for kernel task setting each element to 100
syclflow.rebind_parallel_for(task, sycl::range<1>(N), [](sycl::id<1> id){
data[id] = 100;
});
syclflow.offload();
std::for_each(data, data+N, [data](int i){ assert(data[i] == 100); });
}, queue);
executor.run(taskflow).wait();
@endcode
Each method of task creation in tf::syclFlow has a corresponding method of
rebinding a task to that task type
(e.g., tf::syclFlow::on and tf::syclFlow::rebind_on,
tf::syclFlow::parallel_for and tf::syclFlow::parallel_for).
@section UsesyclFlowInAStandaloneEnvironment Use syclFlow in a Standalone Environment
You can use tf::syclFlow in a standalone environment without going through
tf::Taskflow and offloads it to a SYCL device from the caller thread.
All the tasking methods we have discussed so far apply to the standalone use.
@code{.cpp}
sycl::queue queue;
tf::syclFlow sf(queue); // create a standalone syclFlow
tf::syclTask h2d_x = sf.copy(dx, hx.data(), N).name("h2d_x");
tf::syclTask h2d_y = sf.copy(dy, hy.data(), N).name("h2d_y");
tf::syclTask d2h_x = sf.copy(hx.data(), dx, N).name("d2h_x");
tf::syclTask d2h_y = sf.copy(hy.data(), dy, N).name("d2h_y");
tf::syclTask saxpy = sf.parallel_for(
sycl::range<1>(N), [=] (sycl::id<1> id) {
dx[id] = 2.0f * dx[id] + dy[id];
}
).name("saxpy");
saxpy.succeed(h2d_x, h2d_y) // kernel runs after host-to-device copy
.precede(d2h_x, d2h_y); // kernel runs before device-to-host copy
sf.offload(); // offload and run the standalone syclFlow once
@endcode
@note
In the standalone mode, a written %syclFlow will not be executed untile
you explicitly call an offload method, as there is neither a taskflow nor an executor.
*/
}