mesytec-mnode/external/taskflow-3.8.0/examples/cuda/cuda_reduce.cu
2025-01-04 01:25:05 +01:00

63 lines
1.4 KiB
Text

// This program demonstrate how to perform a parallel reduction
// using cudaFlow.
#include <taskflow/cuda/cudaflow.hpp>
#include <taskflow/cuda/algorithm/reduce.hpp>
int main(int argc, char* argv[]) {
if(argc != 2) {
std::cerr << "usage: ./cuda_reduce num_items\n";
std::exit(EXIT_FAILURE);
}
size_t N = std::atoi(argv[1]);
auto data = tf::cuda_malloc_shared<int>(N);
auto res1 = tf::cuda_malloc_shared<int>(1);
auto res2 = tf::cuda_malloc_shared<int>(1);
auto hres = 0;
// initialize the data
for(size_t i=0; i<N; i++) {
data[i] = ::rand()%100;
hres += data[i];
}
*res1 = 10;
*res2 = 10;
// perform reduction
tf::cudaStream stream;
tf::cudaDefaultExecutionPolicy policy(stream);
// get the buffer size needed for reduction
void* buff;
cudaMalloc(&buff, policy.reduce_bufsz<int>(N));
// res1 = res1 + data[0] + data[1] + ...
tf::cuda_reduce(policy,
data, data+N, res1, [] __device__ (int a, int b){ return a+b; }, buff
);
// res2 = data[0] + data[1] + data[2] + ...
tf::cuda_uninitialized_reduce(policy,
data, data+N, res2, [] __device__ (int a, int b){ return a+b; }, buff
);
stream.synchronize();
// inspect
if(hres + 10 != *res1 || hres != *res2) {
throw std::runtime_error("incorrect result");
}
std::cout << "correct result\n";
cudaFree(data);
cudaFree(res1);
cudaFree(res2);
return 0;
}