mesytec-mnode/external/taskflow-3.8.0/doxygen/releases/release-3.6.0.dox
2025-01-04 01:25:05 +01:00

238 lines
9.5 KiB
Text

namespace tf {
/** @page release-3-6-0 Release 3.6.0 (2023/05/07)
%Taskflow 3.6.0 is the 7th release in the 3.x line!
This release includes several new changes, such as dynamic task graph parallelism,
improved parallel algorithms, modified GPU tasking interface, documentation, examples, and unit tests.
@tableofcontents
@section release-3-6-0_download Download
%Taskflow 3.6.0 can be downloaded from <a href="https://github.com/taskflow/taskflow/releases/tag/v3.6.0">here</a>.
@section release-3-6-0_system_requirements System Requirements
To use %Taskflow v3.6.0, you need a compiler that supports C++17:
@li GNU C++ Compiler at least v8.4 with -std=c++17
@li Clang C++ Compiler at least v6.0 with -std=c++17
@li Microsoft Visual Studio at least v19.27 with /std:c++17
@li AppleClang Xcode Version at least v12.0 with -std=c++17
@li Nvidia CUDA Toolkit and Compiler (nvcc) at least v11.1 with -std=c++17
@li Intel C++ Compiler at least v19.0.1 with -std=c++17
@li Intel DPC++ Clang Compiler at least v13.0.0 with -std=c++17 and SYCL20
%Taskflow works on Linux, Windows, and Mac OS X.
@section release-3-6-0_summary Release Summary
This release contains several changes to largely enhance the programmability
of GPU tasking and standard parallel algorithms.
More importantly, we have introduced a new dependent asynchronous tasking
model that offers great flexibility for expressing dynamic task graph parallelism.
@section release-3-6-0_new_features New Features
@subsection release-3-6-0_taskflow_core Taskflow Core
+ Added new async methods to support dynamic task graph creation
+ tf::Executor::dependent_async(F&& func, Tasks&&... tasks)
+ tf::Executor::dependent_async(F&& func, I first, I last)
+ tf::Executor::silent_dependent_async(F&& func, Tasks&&... tasks)
+ tf::Executor::silent_dependent_async(F&& func, I first, I last)
+ Added new async and join methods to tf::Runtime
+ tf::Runtime::async
+ tf::Runtime::silent_async
+ tf::Runtime::corun_all
+ Added a new partitioner interface to optimize parallel algorithms
+ tf::GuidedPartitioner
+ tf::StaticPartitioner
+ tf::DynamicPartitioner
+ tf::RandomPartitioner
+ Added parallel-scan algorithms to %Taskflow
+ tf::Taskflow::inclusive_scan(B first, E last, D d_first, BOP bop)
+ tf::Taskflow::inclusive_scan(B first, E last, D d_first, BOP bop, T init)
+ tf::Taskflow::transform_inclusive_scan(B first, E last, D d_first, BOP bop, UOP uop)
+ tf::Taskflow::transform_inclusive_scan(B first, E last, D d_first, BOP bop, UOP uop, T init)
+ tf::Taskflow::exclusive_scan(B first, E last, D d_first, T init, BOP bop)
+ tf::Taskflow::transform_exclusive_scan(B first, E last, D d_first, T init, BOP bop, UOP uop)
+ Added parallel-find algorithms to %Taskflow
+ tf::Taskflow::find_if(B first, E last, T& result, UOP predicate, P&& part)
+ tf::Taskflow::find_if_not(B first, E last, T& result, UOP predicate, P&& part)
+ tf::Taskflow::min_element(B first, E last, T& result, C comp, P&& part)
+ tf::Taskflow::max_element(B first, E last, T& result, C comp, P&& part)
+ Modified tf::Subflow as a derived class from tf::Runtime
+ Extended parallel algorithms to support different partitioning algorithms
+ tf::Taskflow::for_each_index(B first, E last, S step, C callable, P&& part)
+ tf::Taskflow::for_each(B first, E last, C callable, P&& part)
+ tf::Taskflow::transform(B first1, E last1, O d_first, C c, P&& part)
+ tf::Taskflow::transform(B1 first1, E1 last1, B2 first2, O d_first, C c, P&& part)
+ tf::Taskflow::reduce(B first, E last, T& result, O bop, P&& part)
+ tf::Taskflow::transform_reduce(B first, E last, T& result, BOP bop, UOP uop, P&& part)
+ Improved the performance of tf::Taskflow::sort for plain-old-data (POD) type
+ Extended task-parallel pipeline to handle token dependencies
+ @ref TaskParallelPipelineWithTokenDependencies
@subsection release-3-6-0_cudaflow cudaFlow
+ removed algorithms that require buffer from tf::cudaFlow due to update limitation
+ removed support for a dedicated %cudaFlow task in %Taskflow
+ all usage of tf::cudaFlow and tf::cudaFlowCapturer are standalone now
@subsection release-3-6-0_utilities Utilities
+ Added all_same templates to check if a parameter pack has the same type
@subsection release-3-6-0_profiler Taskflow Profiler (TFProf)
+ Removed %cudaFlow and %syclFlow tasks
@section release-3-6-0_bug_fixes Bug Fixes
+ Fixed the compilation error caused by clashing `MAX_PRIORITY` wtih `winspool.h` ([#459](https://github.com/taskflow/taskflow/pull/459))
+ Fixed the compilation error caused by tf::TaskView::for_each_successor and tf::TaskView::for_each_dependent
+ Fixed the infinite-loop bug when corunning a module task from tf::Runtime
If you encounter any potential bugs, please submit an issue at @IssueTracker.
@section release-3-6-0_breaking_changes Breaking Changes
+ Dropped support for cancelling asynchronous tasks
@code{.cpp}
// previous - no longer supported
tf::Future<int> fu = executor.async([](){
return 1;
});
fu.cancel();
std::optional<int> res = fu.get(); // res may be std::nullopt or 1
// now - use std::future instead
std::future<int> fu = executor.async([](){
return 1;
});
int res = fu.get();
@endcode
+ Dropped in-place support for running tf::cudaFlow from a dedicated task
@code{.cpp}
// previous - no longer supported
taskflow.emplace([](tf::cudaFlow& cf){
cf.offload();
});
// now - user to fully control tf::cudaFlow for maximum flexibility
taskflow.emplace([](){
tf::cudaFlow cf;
// offload the cudaflow asynchronously through a stream
tf::cudaStream stream;
cf.run(stream);
// wait for the cudaflow completes
stream.synchronize();
});
@endcode
+ Dropped in-place support for running tf::cudaFlowCapturer from a dedicated task
@code{.cpp}
// previous - now longer supported
taskflow.emplace([](tf::cudaFlowCapturer& cf){
cf.offload();
});
// now - user to fully control tf::cudaFlowCapturer for maximum flexibility
taskflow.emplace([](){
tf::cudaFlowCapturer cf;
// offload the cudaflow asynchronously through a stream
tf::cudaStream stream;
cf.run(stream);
// wait for the cudaflow completes
stream.synchronize();
});
@endcode
+ Dropped in-place support for running tf::syclFlow from a dedicated task
+ SYCL can just be used out of box together with %Taskflow
+ Move all buffer query methods of CUDA standard algorithms inside execution policy
+ tf::cudaExecutionPolicy<NT, VT>::reduce_bufsz
+ tf::cudaExecutionPolicy<NT, VT>::scan_bufsz
+ tf::cudaExecutionPolicy<NT, VT>::merge_bufsz
+ tf::cudaExecutionPolicy<NT, VT>::min_element_bufsz
+ tf::cudaExecutionPolicy<NT, VT>::max_element_bufsz
@code{.cpp}
// previous - no longer supported
tf::cuda_reduce_buffer_size<tf::cudaDefaultExecutionPolicy, int>(N);
// now (and similarly for other parallel algorithms)
tf::cudaDefaultExecutionPolicy policy(stream);
policy.reduce_bufsz<int>(N);
@endcode
+ Renamed tf::Executor::run_and_wait to tf::Executor::corun for expressiveness
+ Renamed tf::Executor::loop_until to tf::Executor::corun_until for expressiveness
+ Renamed tf::Runtime::run_and_wait to tf::Runtime::corun for expressiveness
+ Disabled argument support for all asynchronous tasking features
+ users are responsible for creating their own wrapper to make the callable
@code{.cpp}
// previous - async allows passing arguments to the callable
executor.async([](int i){ std::cout << i << std::endl; }, 4);
// now - users are responsible of wrapping the arumgnets into a callable
executor.async([i=4]( std::cout << i << std::endl; ){});
@endcode
+ Replaced `named_async` with an overload that takes the name string on the first argument
@code{.cpp}
// previous - explicitly calling named_async to assign a name to an async task
executor.named_async("name", [](){});
// now - overlaod
executor.async("name", [](){});
@endcode
@section release-3-6-0_documentation Documentation
+ Revised @ref RequestCancellation to remove support of cancelling async tasks
+ Revised @ref AsyncTasking to include asynchronous tasking from tf::Runtime
+ @ref LaunchAsynchronousTasksFromARuntime
+ Revised %Taskflow algorithms to include execution policy
+ @ref PartitioningAlgorithm
+ @ref ParallelIterations
+ @ref ParallelTransforms
+ @ref ParallelReduction
+ Revised CUDA standard algorithms to correct the use of buffer query methods
+ @ref CUDASTDReduce
+ @ref CUDASTDFind
+ @ref CUDASTDMerge
+ @ref CUDASTDScan
+ Added @ref TaskParallelPipelineWithTokenDependencies
+ Added @ref ParallelScan
+ Added @ref DependentAsyncTasking
@section release-3-6-0_miscellaneous_items Miscellaneous Items
We have published %Taskflow in the following venues:
+ Dian-Lun Lin, Yanqing Zhang, Haoxing Ren, Shih-Hsin Wang, Brucek Khailany and Tsung-Wei Huang, &quot;[GenFuzz: GPU-accelerated Hardware Fuzzing using Genetic Algorithm with Multiple Inputs](https://tsung-wei-huang.github.io/papers/2023-dac.pdf),&quot; <em>ACM/IEEE Design Automation Conference (DAC)</em>, San Francisco, CA, 2023
+ Tsung-Wei Huang, &quot;[qTask: Task-parallel Quantum Circuit Simulation with Incrementality](https://tsung-wei-huang.github.io/papers/ipdps23.pdf),&quot; <em>IEEE International Parallel and Distributed Processing Symposium (IPDPS)</em>, St. Petersburg, Florida, 2023
+ Elmir Dzaka, Dian-Lun Lin, and Tsung-Wei Huang, &quot;[Parallel And-Inverter Graph Simulation Using a Task-graph Computing System](https://tsung-wei-huang.github.io/papers/pdco-23.pdf),&quot; <em>IEEE International Parallel and Distributed Processing Symposium Workshop (IPDPSW)</em>, St. Petersburg, Florida, 2023
Please do not hesitate to contact @twhuang if you intend to collaborate with us
on using %Taskflow in your scientific computing projects.
*/
}