#pragma once #include "observer.hpp" #include "taskflow.hpp" /** @file executor.hpp @brief executor include file */ namespace tf { // ---------------------------------------------------------------------------- // Executor Definition // ---------------------------------------------------------------------------- /** @class Executor @brief class to create an executor for running a taskflow graph An executor manages a set of worker threads to run one or multiple taskflows using an efficient work-stealing scheduling algorithm. @code{.cpp} // Declare an executor and a taskflow tf::Executor executor; tf::Taskflow taskflow; // Add three tasks into the taskflow tf::Task A = taskflow.emplace([] () { std::cout << "This is TaskA\n"; }); tf::Task B = taskflow.emplace([] () { std::cout << "This is TaskB\n"; }); tf::Task C = taskflow.emplace([] () { std::cout << "This is TaskC\n"; }); // Build precedence between tasks A.precede(B, C); tf::Future fu = executor.run(taskflow); fu.wait(); // block until the execution completes executor.run(taskflow, [](){ std::cout << "end of 1 run"; }).wait(); executor.run_n(taskflow, 4); executor.wait_for_all(); // block until all associated executions finish executor.run_n(taskflow, 4, [](){ std::cout << "end of 4 runs"; }).wait(); executor.run_until(taskflow, [cnt=0] () mutable { return ++cnt == 10; }); @endcode All the @c run methods are @em thread-safe. You can submit multiple taskflows at the same time to an executor from different threads. */ class Executor { friend class FlowBuilder; friend class Subflow; friend class Runtime; public: /** @brief constructs the executor with @c N worker threads The constructor spawns @c N worker threads to run tasks in a work-stealing loop. The number of workers must be greater than zero or an exception will be thrown. By default, the number of worker threads is equal to the maximum hardware concurrency returned by std::thread::hardware_concurrency. */ explicit Executor(size_t N = std::thread::hardware_concurrency()); /** @brief destructs the executor The destructor calls Executor::wait_for_all to wait for all submitted taskflows to complete and then notifies all worker threads to stop and join these threads. */ ~Executor(); /** @brief runs a taskflow once @param taskflow a tf::Taskflow object @return a tf::Future that holds the result of the execution This member function executes the given taskflow once and returns a tf::Future object that eventually holds the result of the execution. @code{.cpp} tf::Future future = executor.run(taskflow); // do something else future.wait(); @endcode This member function is thread-safe. @attention The executor does not own the given taskflow. It is your responsibility to ensure the taskflow remains alive during its execution. */ tf::Future run(Taskflow& taskflow); /** @brief runs a moved taskflow once @param taskflow a moved tf::Taskflow object @return a tf::Future that holds the result of the execution This member function executes a moved taskflow once and returns a tf::Future object that eventually holds the result of the execution. The executor will take care of the lifetime of the moved taskflow. @code{.cpp} tf::Future future = executor.run(std::move(taskflow)); // do something else future.wait(); @endcode This member function is thread-safe. */ tf::Future run(Taskflow&& taskflow); /** @brief runs a taskflow once and invoke a callback upon completion @param taskflow a tf::Taskflow object @param callable a callable object to be invoked after this run @return a tf::Future that holds the result of the execution This member function executes the given taskflow once and invokes the given callable when the execution completes. This member function returns a tf::Future object that eventually holds the result of the execution. @code{.cpp} tf::Future future = executor.run(taskflow, [](){ std::cout << "done"; }); // do something else future.wait(); @endcode This member function is thread-safe. @attention The executor does not own the given taskflow. It is your responsibility to ensure the taskflow remains alive during its execution. */ template tf::Future run(Taskflow& taskflow, C&& callable); /** @brief runs a moved taskflow once and invoke a callback upon completion @param taskflow a moved tf::Taskflow object @param callable a callable object to be invoked after this run @return a tf::Future that holds the result of the execution This member function executes a moved taskflow once and invokes the given callable when the execution completes. This member function returns a tf::Future object that eventually holds the result of the execution. The executor will take care of the lifetime of the moved taskflow. @code{.cpp} tf::Future future = executor.run( std::move(taskflow), [](){ std::cout << "done"; } ); // do something else future.wait(); @endcode This member function is thread-safe. */ template tf::Future run(Taskflow&& taskflow, C&& callable); /** @brief runs a taskflow for @c N times @param taskflow a tf::Taskflow object @param N number of runs @return a tf::Future that holds the result of the execution This member function executes the given taskflow @c N times and returns a tf::Future object that eventually holds the result of the execution. @code{.cpp} tf::Future future = executor.run_n(taskflow, 2); // run taskflow 2 times // do something else future.wait(); @endcode This member function is thread-safe. @attention The executor does not own the given taskflow. It is your responsibility to ensure the taskflow remains alive during its execution. */ tf::Future run_n(Taskflow& taskflow, size_t N); /** @brief runs a moved taskflow for @c N times @param taskflow a moved tf::Taskflow object @param N number of runs @return a tf::Future that holds the result of the execution This member function executes a moved taskflow @c N times and returns a tf::Future object that eventually holds the result of the execution. The executor will take care of the lifetime of the moved taskflow. @code{.cpp} tf::Future future = executor.run_n( std::move(taskflow), 2 // run the moved taskflow 2 times ); // do something else future.wait(); @endcode This member function is thread-safe. */ tf::Future run_n(Taskflow&& taskflow, size_t N); /** @brief runs a taskflow for @c N times and then invokes a callback @param taskflow a tf::Taskflow @param N number of runs @param callable a callable object to be invoked after this run @return a tf::Future that holds the result of the execution This member function executes the given taskflow @c N times and invokes the given callable when the execution completes. This member function returns a tf::Future object that eventually holds the result of the execution. @code{.cpp} tf::Future future = executor.run( taskflow, 2, [](){ std::cout << "done"; } // runs taskflow 2 times and invoke // the lambda to print "done" ); // do something else future.wait(); @endcode This member function is thread-safe. @attention The executor does not own the given taskflow. It is your responsibility to ensure the taskflow remains alive during its execution. */ template tf::Future run_n(Taskflow& taskflow, size_t N, C&& callable); /** @brief runs a moved taskflow for @c N times and then invokes a callback @param taskflow a moved tf::Taskflow @param N number of runs @param callable a callable object to be invoked after this run @return a tf::Future that holds the result of the execution This member function executes a moved taskflow @c N times and invokes the given callable when the execution completes. This member function returns a tf::Future object that eventually holds the result of the execution. @code{.cpp} tf::Future future = executor.run( // run the moved taskflow 2 times and invoke the lambda to print "done" std::move(taskflow), 2, [](){ std::cout << "done"; } ); // do something else future.wait(); @endcode This member function is thread-safe. */ template tf::Future run_n(Taskflow&& taskflow, size_t N, C&& callable); /** @brief runs a taskflow multiple times until the predicate becomes true @param taskflow a tf::Taskflow @param pred a boolean predicate to return @c true for stop @return a tf::Future that holds the result of the execution This member function executes the given taskflow multiple times until the predicate returns @c true. This member function returns a tf::Future object that eventually holds the result of the execution. @code{.cpp} tf::Future future = executor.run( taskflow, [](){ return rand()%10 == 0 } ); // do something else future.wait(); @endcode This member function is thread-safe. @attention The executor does not own the given taskflow. It is your responsibility to ensure the taskflow remains alive during its execution. */ template tf::Future run_until(Taskflow& taskflow, P&& pred); /** @brief runs a moved taskflow and keeps running it until the predicate becomes true @param taskflow a moved tf::Taskflow object @param pred a boolean predicate to return @c true for stop @return a tf::Future that holds the result of the execution This member function executes a moved taskflow multiple times until the predicate returns @c true. This member function returns a tf::Future object that eventually holds the result of the execution. The executor will take care of the lifetime of the moved taskflow. @code{.cpp} tf::Future future = executor.run( std::move(taskflow), [](){ return rand()%10 == 0 } ); // do something else future.wait(); @endcode This member function is thread-safe. */ template tf::Future run_until(Taskflow&& taskflow, P&& pred); /** @brief runs a taskflow multiple times until the predicate becomes true and then invokes the callback @param taskflow a tf::Taskflow @param pred a boolean predicate to return @c true for stop @param callable a callable object to be invoked after this run completes @return a tf::Future that holds the result of the execution This member function executes the given taskflow multiple times until the predicate returns @c true and then invokes the given callable when the execution completes. This member function returns a tf::Future object that eventually holds the result of the execution. @code{.cpp} tf::Future future = executor.run( taskflow, [](){ return rand()%10 == 0 }, [](){ std::cout << "done"; } ); // do something else future.wait(); @endcode This member function is thread-safe. @attention The executor does not own the given taskflow. It is your responsibility to ensure the taskflow remains alive during its execution. */ template tf::Future run_until(Taskflow& taskflow, P&& pred, C&& callable); /** @brief runs a moved taskflow and keeps running it until the predicate becomes true and then invokes the callback @param taskflow a moved tf::Taskflow @param pred a boolean predicate to return @c true for stop @param callable a callable object to be invoked after this run completes @return a tf::Future that holds the result of the execution This member function executes a moved taskflow multiple times until the predicate returns @c true and then invokes the given callable when the execution completes. This member function returns a tf::Future object that eventually holds the result of the execution. The executor will take care of the lifetime of the moved taskflow. @code{.cpp} tf::Future future = executor.run( std::move(taskflow), [](){ return rand()%10 == 0 }, [](){ std::cout << "done"; } ); // do something else future.wait(); @endcode This member function is thread-safe. */ template tf::Future run_until(Taskflow&& taskflow, P&& pred, C&& callable); /** @brief wait for all tasks to complete This member function waits until all submitted tasks (e.g., taskflows, asynchronous tasks) to finish. @code{.cpp} executor.run(taskflow1); executor.run_n(taskflow2, 10); executor.run_n(taskflow3, 100); executor.wait_for_all(); // wait until the above submitted taskflows finish @endcode */ void wait_for_all(); /** @brief queries the number of worker threads Each worker represents one unique thread spawned by an executor upon its construction time. @code{.cpp} tf::Executor executor(4); std::cout << executor.num_workers(); // 4 @endcode */ size_t num_workers() const noexcept; /** @brief queries the number of running topologies at the time of this call When a taskflow is submitted to an executor, a topology is created to store runtime metadata of the running taskflow. When the execution of the submitted taskflow finishes, its corresponding topology will be removed from the executor. @code{.cpp} executor.run(taskflow); std::cout << executor.num_topologies(); // 0 or 1 (taskflow still running) @endcode */ size_t num_topologies() const; /** @brief queries the number of running taskflows with moved ownership @code{.cpp} executor.run(std::move(taskflow)); std::cout << executor.num_taskflows(); // 0 or 1 (taskflow still running) @endcode */ size_t num_taskflows() const; /** @brief queries the id of the caller thread in this executor Each worker has an unique id in the range of @c 0 to @c N-1 associated with its parent executor. If the caller thread does not belong to the executor, @c -1 is returned. @code{.cpp} tf::Executor executor(4); // 4 workers in the executor executor.this_worker_id(); // -1 (main thread is not a worker) taskflow.emplace([&](){ std::cout << executor.this_worker_id(); // 0, 1, 2, or 3 }); executor.run(taskflow); @endcode */ int this_worker_id() const; /** @brief runs a given function asynchronously @tparam F callable type @tparam ArgsT parameter types @param f callable object to call @param args parameters to pass to the callable @return a tf::Future that will holds the result of the execution The method creates an asynchronous task to launch the given function on the given arguments. Unlike std::async, the return here is a @em tf::Future that holds an optional object to the result. If the asynchronous task is cancelled before it runs, the return is a @c std::nullopt, or the value returned by the callable. @code{.cpp} tf::Future> future = executor.async([](){ std::cout << "create an asynchronous task and returns 1\n"; return 1; }); @endcode This member function is thread-safe. */ template auto async(F&& f, ArgsT&&... args); /** @brief runs a given function asynchronously and gives a name to this task @tparam F callable type @tparam ArgsT parameter types @param name name of the asynchronous task @param f callable object to call @param args parameters to pass to the callable @return a tf::Future that will holds the result of the execution The method creates a named asynchronous task to launch the given function on the given arguments. Naming an asynchronous task is primarily used for profiling and visualizing the task execution timeline. Unlike std::async, the return here is a tf::Future that holds an optional object to the result. If the asynchronous task is cancelled before it runs, the return is a @c std::nullopt, or the value returned by the callable. @code{.cpp} tf::Future> future = executor.named_async("name", [](){ std::cout << "create an asynchronous task with a name and returns 1\n"; return 1; }); @endcode This member function is thread-safe. */ template auto named_async(const std::string& name, F&& f, ArgsT&&... args); /** @brief similar to tf::Executor::async but does not return a future object This member function is more efficient than tf::Executor::async and is encouraged to use when there is no data returned. @code{.cpp} executor.silent_async([](){ std::cout << "create an asynchronous task with no return\n"; }); @endcode This member function is thread-safe. */ template void silent_async(F&& f, ArgsT&&... args); /** @brief similar to tf::Executor::named_async but does not return a future object This member function is more efficient than tf::Executor::named_async and is encouraged to use when there is no data returned. @code{.cpp} executor.named_silent_async("name", [](){ std::cout << "create an asynchronous task with a name and no return\n"; }); @endcode This member function is thread-safe. */ template void named_silent_async(const std::string& name, F&& f, ArgsT&&... args); /** @brief constructs an observer to inspect the activities of worker threads @tparam Observer observer type derived from tf::ObserverInterface @tparam ArgsT argument parameter pack @param args arguments to forward to the constructor of the observer @return a shared pointer to the created observer Each executor manages a list of observers with shared ownership with callers. For each of these observers, the two member functions, tf::ObserverInterface::on_entry and tf::ObserverInterface::on_exit will be called before and after the execution of a task. This member function is not thread-safe. */ template std::shared_ptr make_observer(ArgsT&&... args); /** @brief removes an observer from the executor This member function is not thread-safe. */ template void remove_observer(std::shared_ptr observer); /** @brief queries the number of observers */ size_t num_observers() const noexcept; private: std::condition_variable _topology_cv; std::mutex _taskflow_mutex; std::mutex _topology_mutex; std::mutex _wsq_mutex; size_t _num_topologies {0}; std::unordered_map _wids; std::vector _workers; std::vector _threads; std::list _taskflows; Notifier _notifier; TaskQueue _wsq; std::atomic _num_actives {0}; std::atomic _num_thieves {0}; std::atomic _done {0}; std::unordered_set> _observers; Worker* _this_worker(); bool _wait_for_task(Worker&, Node*&); void _observer_prologue(Worker&, Node*); void _observer_epilogue(Worker&, Node*); void _spawn(size_t); void _worker_loop(Worker&); void _exploit_task(Worker&, Node*&); void _explore_task(Worker&, Node*&); void _consume_task(Worker&, Node*); void _schedule(Worker&, Node*); void _schedule(Node*); void _schedule(Worker&, const SmallVector&); void _schedule(const SmallVector&); void _set_up_topology(Worker*, Topology*); void _tear_down_topology(Worker&, Topology*); void _tear_down_async(Node*); void _tear_down_invoke(Worker&, Node*); void _cancel_invoke(Worker&, Node*); void _increment_topology(); void _decrement_topology(); void _decrement_topology_and_notify(); void _invoke(Worker&, Node*); void _invoke_static_task(Worker&, Node*); void _invoke_dynamic_task(Worker&, Node*); void _invoke_dynamic_task_external(Worker&, Node*, Graph&, bool); void _invoke_dynamic_task_internal(Worker&, Node*, Graph&); void _invoke_condition_task(Worker&, Node*, SmallVector&); void _invoke_multi_condition_task(Worker&, Node*, SmallVector&); void _invoke_module_task(Worker&, Node*, bool&); void _invoke_module_task_internal(Worker&, Node*, Graph&, bool&); void _invoke_async_task(Worker&, Node*); void _invoke_silent_async_task(Worker&, Node*); void _invoke_cudaflow_task(Worker&, Node*); void _invoke_syclflow_task(Worker&, Node*); void _invoke_runtime_task(Worker&, Node*); template , void>* = nullptr > void _invoke_cudaflow_task_entry(Node*, C&&); template , void>* = nullptr > void _invoke_syclflow_task_entry(Node*, C&&, Q&); }; // Constructor inline Executor::Executor(size_t N) : _workers {N}, _notifier {N} { if(N == 0) { TF_THROW("no cpu workers to execute taskflows"); } _spawn(N); // instantite the default observer if requested if(has_env(TF_ENABLE_PROFILER)) { TFProfManager::get()._manage(make_observer()); } } // Destructor inline Executor::~Executor() { // wait for all topologies to complete wait_for_all(); // shut down the scheduler _done = true; _notifier.notify(true); for(auto& t : _threads){ t.join(); } } // Function: num_workers inline size_t Executor::num_workers() const noexcept { return _workers.size(); } // Function: num_topologies inline size_t Executor::num_topologies() const { return _num_topologies; } // Function: num_taskflows inline size_t Executor::num_taskflows() const { return _taskflows.size(); } // Function: _this_worker inline Worker* Executor::_this_worker() { auto itr = _wids.find(std::this_thread::get_id()); return itr == _wids.end() ? nullptr : &_workers[itr->second]; } // Function: named_async template auto Executor::named_async(const std::string& name, F&& f, ArgsT&&... args) { _increment_topology(); using T = std::invoke_result_t; using R = std::conditional_t, void, std::optional>; std::promise p; auto tpg = std::make_shared(); Future fu(p.get_future(), tpg); auto node = node_pool.animate( std::in_place_type_t{}, [p=make_moc(std::move(p)), f=std::forward(f), args...] (bool cancel) mutable { if constexpr(std::is_same_v) { if(!cancel) { f(args...); } p.object.set_value(); } else { p.object.set_value(cancel ? std::nullopt : std::make_optional(f(args...))); } }, std::move(tpg) ); node->_name = name; if(auto w = _this_worker(); w) { _schedule(*w, node); } else{ _schedule(node); } return fu; } // Function: async template auto Executor::async(F&& f, ArgsT&&... args) { return named_async("", std::forward(f), std::forward(args)...); } // Function: named_silent_async template void Executor::named_silent_async( const std::string& name, F&& f, ArgsT&&... args ) { _increment_topology(); Node* node = node_pool.animate( std::in_place_type_t{}, [f=std::forward(f), args...] () mutable { f(args...); } ); node->_name = name; if(auto w = _this_worker(); w) { _schedule(*w, node); } else { _schedule(node); } } // Function: silent_async template void Executor::silent_async(F&& f, ArgsT&&... args) { named_silent_async("", std::forward(f), std::forward(args)...); } // Function: this_worker_id inline int Executor::this_worker_id() const { auto i = _wids.find(std::this_thread::get_id()); return i == _wids.end() ? -1 : static_cast(_workers[i->second]._id); } // Procedure: _spawn inline void Executor::_spawn(size_t N) { std::mutex mutex; std::condition_variable cond; size_t n=0; for(size_t id=0; id void { // enables the mapping { std::scoped_lock lock(mutex); _wids[std::this_thread::get_id()] = w._id; if(n++; n == num_workers()) { cond.notify_one(); } } //this_worker().worker = &w; Node* t = nullptr; // must use 1 as condition instead of !done while(1) { // execute the tasks. _exploit_task(w, t); // wait for tasks if(_wait_for_task(w, t) == false) { break; } } }, std::ref(_workers[id]), std::ref(mutex), std::ref(cond), std::ref(n)); } std::unique_lock lock(mutex); cond.wait(lock, [&](){ return n==N; }); } // Function: _consume_task inline void Executor::_consume_task(Worker& w, Node* p) { std::uniform_int_distribution rdvtm(0, _workers.size()-1); while(p->_join_counter != 0) { exploit: if(auto t = w._wsq.pop(); t) { _invoke(w, t); } else { size_t num_steals = 0; //size_t num_pauses = 0; size_t max_steals = ((_workers.size() + 1) << 1); explore: t = (w._id == w._vtm) ? _wsq.steal() : _workers[w._vtm]._wsq.steal(); if(t) { _invoke(w, t); goto exploit; } else if(p->_join_counter != 0){ if(num_steals++ > max_steals) { std::this_thread::yield(); } //std::this_thread::yield(); w._vtm = rdvtm(w._rdgen); goto explore; } else { break; } } } } // Function: _explore_task inline void Executor::_explore_task(Worker& w, Node*& t) { //assert(_workers[w].wsq.empty()); //assert(!t); size_t num_steals = 0; size_t num_yields = 0; size_t max_steals = ((_workers.size() + 1) << 1); std::uniform_int_distribution rdvtm(0, _workers.size()-1); do { t = (w._id == w._vtm) ? _wsq.steal() : _workers[w._vtm]._wsq.steal(); if(t) { break; } if(num_steals++ > max_steals) { std::this_thread::yield(); if(num_yields++ > 100) { break; } } w._vtm = rdvtm(w._rdgen); } while(!_done); } // Procedure: _exploit_task inline void Executor::_exploit_task(Worker& w, Node*& t) { if(t) { if(_num_actives.fetch_add(1) == 0 && _num_thieves == 0) { _notifier.notify(false); } while(t) { _invoke(w, t); t = w._wsq.pop(); } --_num_actives; } } // Function: _wait_for_task inline bool Executor::_wait_for_task(Worker& worker, Node*& t) { wait_for_task: //assert(!t); ++_num_thieves; explore_task: _explore_task(worker, t); if(t) { if(_num_thieves.fetch_sub(1) == 1) { _notifier.notify(false); } return true; } _notifier.prepare_wait(worker._waiter); //if(auto vtm = _find_vtm(me); vtm != _workers.size()) { if(!_wsq.empty()) { _notifier.cancel_wait(worker._waiter); //t = (vtm == me) ? _wsq.steal() : _workers[vtm].wsq.steal(); t = _wsq.steal(); // must steal here if(t) { if(_num_thieves.fetch_sub(1) == 1) { _notifier.notify(false); } return true; } else { worker._vtm = worker._id; goto explore_task; } } if(_done) { _notifier.cancel_wait(worker._waiter); _notifier.notify(true); --_num_thieves; return false; } if(_num_thieves.fetch_sub(1) == 1) { if(_num_actives) { _notifier.cancel_wait(worker._waiter); goto wait_for_task; } // check all queues again for(auto& w : _workers) { if(!w._wsq.empty()) { worker._vtm = w._id; _notifier.cancel_wait(worker._waiter); goto wait_for_task; } } } // Now I really need to relinquish my self to others _notifier.commit_wait(worker._waiter); return true; } // Function: make_observer template std::shared_ptr Executor::make_observer(ArgsT&&... args) { static_assert( std::is_base_of_v, "Observer must be derived from ObserverInterface" ); // use a local variable to mimic the constructor auto ptr = std::make_shared(std::forward(args)...); ptr->set_up(_workers.size()); _observers.emplace(std::static_pointer_cast(ptr)); return ptr; } // Procedure: remove_observer template void Executor::remove_observer(std::shared_ptr ptr) { static_assert( std::is_base_of_v, "Observer must be derived from ObserverInterface" ); _observers.erase(std::static_pointer_cast(ptr)); } // Function: num_observers inline size_t Executor::num_observers() const noexcept { return _observers.size(); } // Procedure: _schedule inline void Executor::_schedule(Worker& worker, Node* node) { node->_state.fetch_or(Node::READY, std::memory_order_release); // caller is a worker to this pool if(worker._executor == this) { worker._wsq.push(node); return; } { std::lock_guard lock(_wsq_mutex); _wsq.push(node); } _notifier.notify(false); } // Procedure: _schedule inline void Executor::_schedule(Node* node) { node->_state.fetch_or(Node::READY, std::memory_order_release); { std::lock_guard lock(_wsq_mutex); _wsq.push(node); } _notifier.notify(false); } // Procedure: _schedule inline void Executor::_schedule( Worker& worker, const SmallVector& nodes ) { // We need to cacth the node count to avoid accessing the nodes // vector while the parent topology is removed! const auto num_nodes = nodes.size(); if(num_nodes == 0) { return; } // make the node ready for(size_t i=0; i_state.fetch_or(Node::READY, std::memory_order_release); } if(worker._executor == this) { for(size_t i=0; i lock(_wsq_mutex); for(size_t k=0; k& nodes) { // parent topology may be removed! const auto num_nodes = nodes.size(); if(num_nodes == 0) { return; } // make the node ready for(size_t i=0; i_state.fetch_or(Node::READY, std::memory_order_release); } { std::lock_guard lock(_wsq_mutex); for(size_t k=0; k conds; // synchronize all outstanding memory operations caused by reordering do { state = node->_state.load(std::memory_order_acquire); } while(! (state & Node::READY)); // unwind stack for deferred node if(state & Node::DEFERRED) { node->_state.fetch_and(~Node::DEFERRED, std::memory_order_relaxed); goto invoke_epilogue; } //while(!(node->_state.load(std::memory_order_acquire) & Node::READY)); invoke_prologue: // no need to do other things if the topology is cancelled if(node->_is_cancelled()) { _cancel_invoke(worker, node); return; } // if acquiring semaphore(s) exists, acquire them first if(node->_semaphores && !node->_semaphores->to_acquire.empty()) { SmallVector nodes; if(!node->_acquire_all(nodes)) { _schedule(worker, nodes); return; } node->_state.fetch_or(Node::ACQUIRED, std::memory_order_release); } // condition task //int cond = -1; //SmallVector conds = { -1 }; // switch is faster than nested if-else due to jump table switch(node->_handle.index()) { // static task case Node::STATIC:{ _invoke_static_task(worker, node); } break; // dynamic task case Node::DYNAMIC: { _invoke_dynamic_task(worker, node); } break; // condition task case Node::CONDITION: { _invoke_condition_task(worker, node, conds); } break; // multi-condition task case Node::MULTI_CONDITION: { _invoke_multi_condition_task(worker, node, conds); } break; // module task case Node::MODULE: { bool deferred = false; _invoke_module_task(worker, node, deferred); if(deferred) { return; } } break; // async task case Node::ASYNC: { _invoke_async_task(worker, node); _tear_down_async(node); return ; } break; // silent async task case Node::SILENT_ASYNC: { _invoke_silent_async_task(worker, node); _tear_down_async(node); return ; } break; // cudaflow task case Node::CUDAFLOW: { _invoke_cudaflow_task(worker, node); } break; // syclflow task case Node::SYCLFLOW: { _invoke_syclflow_task(worker, node); } break; // runtime task case Node::RUNTIME: { _invoke_runtime_task(worker, node); } break; // monostate (placeholder) default: break; } invoke_epilogue: // if releasing semaphores exist, release them if(node->_semaphores && !node->_semaphores->to_release.empty()) { _schedule(worker, node->_release_all()); } // We MUST recover the dependency since the graph may have cycles. // This must be done before scheduling the successors, otherwise this might cause // race condition on the _dependents if((node->_state.load(std::memory_order_relaxed) & Node::CONDITIONED)) { node->_join_counter = node->num_strong_dependents(); } else { node->_join_counter = node->num_dependents(); } // acquire the parent flow counter auto& j = (node->_parent) ? node->_parent->_join_counter : node->_topology->_join_counter; Node* cache {nullptr}; // At this point, the node storage might be destructed (to be verified) // case 1: non-condition task switch(node->_handle.index()) { // condition and multi-condition tasks case Node::CONDITION: case Node::MULTI_CONDITION: { for(auto cond : conds) { if(cond >= 0 && static_cast(cond) < node->_successors.size()) { auto s = node->_successors[cond]; // zeroing the join counter for invariant s->_join_counter.store(0, std::memory_order_relaxed); j.fetch_add(1); if(cache) { _schedule(worker, cache); } cache = s; } } } break; // non-condition task default: { for(size_t i=0; i_successors.size(); ++i) { if(--(node->_successors[i]->_join_counter) == 0) { j.fetch_add(1); if(cache) { _schedule(worker, cache); } cache = node->_successors[i]; } } } break; } // tear_down the invoke _tear_down_invoke(worker, node); // perform tail recursion elimination for the right-most child to reduce // the number of expensive pop/push operations through the task queue if(cache) { node = cache; //node->_state.fetch_or(Node::READY, std::memory_order_release); goto invoke_prologue; } } // Procedure: _tear_down_async inline void Executor::_tear_down_async(Node* node) { if(node->_parent) { node->_parent->_join_counter.fetch_sub(1); } else { _decrement_topology_and_notify(); } node_pool.recycle(node); } // Proecdure: _tear_down_invoke inline void Executor::_tear_down_invoke(Worker& worker, Node* node) { // we must check parent first before substracting the join counter, // or it can introduce data race if(auto parent = node->_parent; parent == nullptr) { if(node->_topology->_join_counter.fetch_sub(1) == 1) { _tear_down_topology(worker, node->_topology); } } else { // prefetch the deferred status, as subtracting the join counter can // immediately cause the other worker to release the subflow auto deferred = parent->_state.load(std::memory_order_relaxed) & Node::DEFERRED; if(parent->_join_counter.fetch_sub(1) == 1 && deferred) { _schedule(worker, parent); } } } // Procedure: _cancel_invoke inline void Executor::_cancel_invoke(Worker& worker, Node* node) { switch(node->_handle.index()) { // async task needs to carry out the promise case Node::ASYNC: std::get_if(&(node->_handle))->work(true); _tear_down_async(node); break; // silent async doesn't need to carry out the promise case Node::SILENT_ASYNC: _tear_down_async(node); break; // tear down topology if the node is the last leaf default: { _tear_down_invoke(worker, node); } break; } } // Procedure: _observer_prologue inline void Executor::_observer_prologue(Worker& worker, Node* node) { for(auto& observer : _observers) { observer->on_entry(WorkerView(worker), TaskView(*node)); } } // Procedure: _observer_epilogue inline void Executor::_observer_epilogue(Worker& worker, Node* node) { for(auto& observer : _observers) { observer->on_exit(WorkerView(worker), TaskView(*node)); } } // Procedure: _invoke_static_task inline void Executor::_invoke_static_task(Worker& worker, Node* node) { _observer_prologue(worker, node); std::get_if(&node->_handle)->work(); _observer_epilogue(worker, node); } // Procedure: _invoke_dynamic_task inline void Executor::_invoke_dynamic_task(Worker& w, Node* node) { _observer_prologue(w, node); auto handle = std::get_if(&node->_handle); handle->subgraph._clear(); Subflow sf(*this, w, node, handle->subgraph); handle->work(sf); if(sf._joinable) { _invoke_dynamic_task_internal(w, node, handle->subgraph); } _observer_epilogue(w, node); } // Procedure: _invoke_dynamic_task_external inline void Executor::_invoke_dynamic_task_external( Worker& w, Node* p, Graph& g, bool detach ) { // graph is empty and has no async tasks if(g.empty() && p->_join_counter == 0) { return; } SmallVector src; for(auto n : g._nodes) { n->_topology = p->_topology; n->_state.store(0, std::memory_order_relaxed); n->_set_up_join_counter(); if(detach) { n->_parent = nullptr; n->_state.fetch_or(Node::DETACHED, std::memory_order_relaxed); } else { n->_parent = p; } if(n->num_dependents() == 0) { src.push_back(n); } } // detach here if(detach) { { std::lock_guard lock(p->_topology->_taskflow._mutex); p->_topology->_taskflow._graph._merge(std::move(g)); } p->_topology->_join_counter.fetch_add(src.size()); _schedule(w, src); } // join here else { p->_join_counter.fetch_add(src.size()); _schedule(w, src); _consume_task(w, p); } } // Procedure: _invoke_dynamic_task_internal inline void Executor::_invoke_dynamic_task_internal( Worker& w, Node* p, Graph& g ) { // graph is empty and has no async tasks if(g.empty() && p->_join_counter == 0) { return; } SmallVector src; for(auto n : g._nodes) { n->_topology = p->_topology; n->_state.store(0, std::memory_order_relaxed); n->_set_up_join_counter(); n->_parent = p; if(n->num_dependents() == 0) { src.push_back(n); } } p->_join_counter.fetch_add(src.size()); _schedule(w, src); _consume_task(w, p); } // Procedure: _invoke_module_task_internal inline void Executor::_invoke_module_task_internal( Worker& w, Node* p, Graph& g, bool& deferred ) { // graph is empty and has no async tasks if(g.empty()) { return; } // set deferred deferred = true; p->_state.fetch_or(Node::DEFERRED, std::memory_order_relaxed); SmallVector src; for(auto n : g._nodes) { n->_topology = p->_topology; n->_state.store(0, std::memory_order_relaxed); n->_set_up_join_counter(); n->_parent = p; if(n->num_dependents() == 0) { src.push_back(n); } } p->_join_counter.fetch_add(src.size()); _schedule(w, src); } // Procedure: _invoke_condition_task inline void Executor::_invoke_condition_task( Worker& worker, Node* node, SmallVector& conds ) { _observer_prologue(worker, node); conds = { std::get_if(&node->_handle)->work() }; _observer_epilogue(worker, node); } // Procedure: _invoke_multi_condition_task inline void Executor::_invoke_multi_condition_task( Worker& worker, Node* node, SmallVector& conds ) { _observer_prologue(worker, node); conds = std::get_if(&node->_handle)->work(); _observer_epilogue(worker, node); } // Procedure: _invoke_cudaflow_task inline void Executor::_invoke_cudaflow_task(Worker& worker, Node* node) { _observer_prologue(worker, node); std::get_if(&node->_handle)->work(*this, node); _observer_epilogue(worker, node); } // Procedure: _invoke_syclflow_task inline void Executor::_invoke_syclflow_task(Worker& worker, Node* node) { _observer_prologue(worker, node); std::get_if(&node->_handle)->work(*this, node); _observer_epilogue(worker, node); } // Procedure: _invoke_module_task inline void Executor::_invoke_module_task(Worker& w, Node* node, bool& deferred) { _observer_prologue(w, node); _invoke_module_task_internal( w, node, std::get_if(&node->_handle)->graph, deferred ); _observer_epilogue(w, node); } // Procedure: _invoke_async_task inline void Executor::_invoke_async_task(Worker& w, Node* node) { _observer_prologue(w, node); std::get_if(&node->_handle)->work(false); _observer_epilogue(w, node); } // Procedure: _invoke_silent_async_task inline void Executor::_invoke_silent_async_task(Worker& w, Node* node) { _observer_prologue(w, node); std::get_if(&node->_handle)->work(); _observer_epilogue(w, node); } // Procedure: _invoke_runtime_task inline void Executor::_invoke_runtime_task(Worker& w, Node* node) { _observer_prologue(w, node); Runtime rt(*this, w, node); std::get_if(&node->_handle)->work(rt); _observer_epilogue(w, node); } // Function: run inline tf::Future Executor::run(Taskflow& f) { return run_n(f, 1, [](){}); } // Function: run inline tf::Future Executor::run(Taskflow&& f) { return run_n(std::move(f), 1, [](){}); } // Function: run template tf::Future Executor::run(Taskflow& f, C&& c) { return run_n(f, 1, std::forward(c)); } // Function: run template tf::Future Executor::run(Taskflow&& f, C&& c) { return run_n(std::move(f), 1, std::forward(c)); } // Function: run_n inline tf::Future Executor::run_n(Taskflow& f, size_t repeat) { return run_n(f, repeat, [](){}); } // Function: run_n inline tf::Future Executor::run_n(Taskflow&& f, size_t repeat) { return run_n(std::move(f), repeat, [](){}); } // Function: run_n template tf::Future Executor::run_n(Taskflow& f, size_t repeat, C&& c) { return run_until( f, [repeat]() mutable { return repeat-- == 0; }, std::forward(c) ); } // Function: run_n template tf::Future Executor::run_n(Taskflow&& f, size_t repeat, C&& c) { return run_until( std::move(f), [repeat]() mutable { return repeat-- == 0; }, std::forward(c) ); } // Function: run_until template tf::Future Executor::run_until(Taskflow& f, P&& pred) { return run_until(f, std::forward

(pred), [](){}); } // Function: run_until template tf::Future Executor::run_until(Taskflow&& f, P&& pred) { return run_until(std::move(f), std::forward

(pred), [](){}); } // Function: run_until template tf::Future Executor::run_until(Taskflow& f, P&& p, C&& c) { _increment_topology(); // Need to check the empty under the lock since dynamic task may // define detached blocks that modify the taskflow at the same time bool empty; { std::lock_guard lock(f._mutex); empty = f.empty(); } // No need to create a real topology but returns an dummy future if(empty || p()) { c(); std::promise promise; promise.set_value(); _decrement_topology_and_notify(); return tf::Future(promise.get_future(), std::monostate{}); } // create a topology for this run auto t = std::make_shared(f, std::forward

(p), std::forward(c)); // need to create future before the topology got torn down quickly tf::Future future(t->_promise.get_future(), t); // modifying topology needs to be protected under the lock { std::lock_guard lock(f._mutex); f._topologies.push(t); if(f._topologies.size() == 1) { _set_up_topology(_this_worker(), t.get()); } } return future; } // Function: run_until template tf::Future Executor::run_until(Taskflow&& f, P&& pred, C&& c) { std::list::iterator itr; { std::scoped_lock lock(_taskflow_mutex); itr = _taskflows.emplace(_taskflows.end(), std::move(f)); itr->_satellite = itr; } return run_until(*itr, std::forward

(pred), std::forward(c)); } // Procedure: _increment_topology inline void Executor::_increment_topology() { std::lock_guard lock(_topology_mutex); ++_num_topologies; } // Procedure: _decrement_topology_and_notify inline void Executor::_decrement_topology_and_notify() { std::lock_guard lock(_topology_mutex); if(--_num_topologies == 0) { _topology_cv.notify_all(); } } // Procedure: _decrement_topology inline void Executor::_decrement_topology() { std::lock_guard lock(_topology_mutex); --_num_topologies; } // Procedure: wait_for_all inline void Executor::wait_for_all() { std::unique_lock lock(_topology_mutex); _topology_cv.wait(lock, [&](){ return _num_topologies == 0; }); } // Function: _set_up_topology inline void Executor::_set_up_topology(Worker* worker, Topology* tpg) { // ---- under taskflow lock ---- tpg->_sources.clear(); tpg->_taskflow._graph._clear_detached(); // scan each node in the graph and build up the links for(auto node : tpg->_taskflow._graph._nodes) { node->_topology = tpg; node->_state.store(0, std::memory_order_relaxed); if(node->num_dependents() == 0) { tpg->_sources.push_back(node); } node->_set_up_join_counter(); } tpg->_join_counter = tpg->_sources.size(); if(worker) { _schedule(*worker, tpg->_sources); } else { _schedule(tpg->_sources); } } // Function: _tear_down_topology inline void Executor::_tear_down_topology(Worker& worker, Topology* tpg) { auto &f = tpg->_taskflow; //assert(&tpg == &(f._topologies.front())); // case 1: we still need to run the topology again if(!tpg->_is_cancelled && !tpg->_pred()) { //assert(tpg->_join_counter == 0); std::lock_guard lock(f._mutex); tpg->_join_counter = tpg->_sources.size(); _schedule(worker, tpg->_sources); } // case 2: the final run of this topology else { // TODO: if the topology is cancelled, need to release all semaphores if(tpg->_call != nullptr) { tpg->_call(); } // If there is another run (interleave between lock) if(std::unique_lock lock(f._mutex); f._topologies.size()>1) { //assert(tpg->_join_counter == 0); // Set the promise tpg->_promise.set_value(); f._topologies.pop(); tpg = f._topologies.front().get(); // decrement the topology but since this is not the last we don't notify _decrement_topology(); // set up topology needs to be under the lock or it can // introduce memory order error with pop _set_up_topology(&worker, tpg); } else { //assert(f._topologies.size() == 1); // Need to back up the promise first here becuz taskflow might be // destroy soon after calling get auto p {std::move(tpg->_promise)}; // Back up lambda capture in case it has the topology pointer, // to avoid it releasing on pop_front ahead of _mutex.unlock & // _promise.set_value. Released safely when leaving scope. auto c {std::move(tpg->_call)}; // Get the satellite if any auto s {f._satellite}; // Now we remove the topology from this taskflow f._topologies.pop(); //f._mutex.unlock(); lock.unlock(); // We set the promise in the end in case taskflow leaves the scope. // After set_value, the caller will return from wait p.set_value(); _decrement_topology_and_notify(); // remove the taskflow if it is managed by the executor // TODO: in the future, we may need to synchronize on wait // (which means the following code should the moved before set_value) if(s) { std::scoped_lock lock(_taskflow_mutex); _taskflows.erase(*s); } } } } // ############################################################################ // Forward Declaration: Subflow // ############################################################################ inline void Subflow::join() { // assert(this_worker().worker == &_worker); if(!_joinable) { TF_THROW("subflow not joinable"); } // only the parent worker can join the subflow _executor._invoke_dynamic_task_external(_worker, _parent, _graph, false); _joinable = false; } inline void Subflow::detach() { // assert(this_worker().worker == &_worker); if(!_joinable) { TF_THROW("subflow already joined or detached"); } // only the parent worker can detach the subflow _executor._invoke_dynamic_task_external(_worker, _parent, _graph, true); _joinable = false; } // Function: named_async template auto Subflow::named_async(const std::string& name, F&& f, ArgsT&&... args) { return _named_async( *_executor._this_worker(), name, std::forward(f), std::forward(args)... ); } // Function: _named_async template auto Subflow::_named_async( Worker& w, const std::string& name, F&& f, ArgsT&&... args ) { _parent->_join_counter.fetch_add(1); using T = std::invoke_result_t; using R = std::conditional_t, void, std::optional>; std::promise p; auto tpg = std::make_shared(); Future fu(p.get_future(), tpg); auto node = node_pool.animate( std::in_place_type_t{}, [p=make_moc(std::move(p)), f=std::forward(f), args...] (bool cancel) mutable { if constexpr(std::is_same_v) { if(!cancel) { f(args...); } p.object.set_value(); } else { p.object.set_value(cancel ? std::nullopt : std::make_optional(f(args...))); } }, std::move(tpg) ); node->_name = name; node->_topology = _parent->_topology; node->_parent = _parent; _executor._schedule(w, node); return fu; } // Function: async template auto Subflow::async(F&& f, ArgsT&&... args) { return named_async("", std::forward(f), std::forward(args)...); } // Function: _named_silent_async template void Subflow::_named_silent_async( Worker& w, const std::string& name, F&& f, ArgsT&&... args ) { _parent->_join_counter.fetch_add(1); auto node = node_pool.animate( std::in_place_type_t{}, [f=std::forward(f), args...] () mutable { f(args...); } ); node->_name = name; node->_topology = _parent->_topology; node->_parent = _parent; _executor._schedule(w, node); } // Function: silent_async template void Subflow::named_silent_async(const std::string& name, F&& f, ArgsT&&... args) { _named_silent_async( *_executor._this_worker(), name, std::forward(f), std::forward(args)... ); } // Function: named_silent_async template void Subflow::silent_async(F&& f, ArgsT&&... args) { named_silent_async("", std::forward(f), std::forward(args)...); } // ############################################################################ // Forward Declaration: Runtime // ############################################################################ // Procedure: schedule inline void Runtime::schedule(Task task) { auto node = task._node; auto& j = node->_parent ? node->_parent->_join_counter : node->_topology->_join_counter; j.fetch_add(1); _executor._schedule(_worker, node); } // Procedure: run template void Runtime::run(C&& callable) { // dynamic task (subflow) if constexpr(is_dynamic_task_v) { Graph graph; Subflow sf(_executor, _worker, _parent, graph); callable(sf); if(sf._joinable) { _executor._invoke_dynamic_task_internal(_worker, _parent, graph); } } else { static_assert(dependent_false_v, "unsupported task callable to run"); } } } // end of namespace tf -----------------------------------------------------