namespace tf { /** @page ParallelScan Parallel Scan %Taskflow provide template methods that construct tasks to perform parallel scan over a range of items. @tableofcontents @section ParallelScanInclude Include the Header You need to include the header file, taskflow/algorithm/scan.hpp, for creating a parallel-scan task. @code{.cpp} #include @endcode @section WhatIsAScanOperation What is a Scan Operation? A parallel scan task performs the cumulative sum, also known as prefix sum or @em scan, of the input range and writes the result to the output range. Each element of the output range contains the running total of all earlier elements using the given binary operator for summation. @image html images/scan.png @section CreateAParallelInclusiveScanTask Create a Parallel Inclusive Scan Task tf::Taskflow::inclusive_scan(B first, E last, D d_first, BOP bop) generates an @em inclusive scan, meaning that the N-th element of the output range is the sum of the first N input elements, so the N-th input element is included. For example, the code below performs an inclusive scan over five elements: @code{.cpp} std::vector input = {1, 2, 3, 4, 5}; std::vector output(input.size()) taskflow.inclusive_scan( input.begin(), input.end(), output.begin(), std::plus{} ); executor.run(taskflow).wait(); // output is {1, 3, 6, 10, 15} @endcode The output range may be the same as the input range, in which the scan operation is @em in-place with results written to the input range. For example, the code below performs an in-place inclusive scan over five elements: @code{.cpp} std::vector input = {1, 2, 3, 4, 5}; taskflow.inclusive_scan( input.begin(), input.end(), input.begin(), std::plus{} ); executor.run(taskflow).wait(); // input is {1, 3, 6, 10, 15} @endcode Similar to tf::Taskflow::inclusive_scan(B first, E last, D d_first, BOP bop), tf::Taskflow::inclusive_scan(B first, E last, D d_first, BOP bop, T init) performs an inclusive scan but with an additional initial value @c init. For example, the code below performs an inclusive scan over five elements plus an initial value: @code{.cpp} std::vector input = {1, 2, 3, 4, 5}; std::vector output(input.size()); // performs inclusive scan with an initial value taskflow.inclusive_scan( input.begin(), input.end(), output.begin(), std::plus{}, -1 ); executor.run(taskflow).wait(); // output is {0, 2, 5, 9, 14} @endcode @section CreateAParallelTransformInclusiveScanTask Create a Parallel Transform-Inclusive Scan Task You can transform elements in the input range before running inclusive scan using tf::Taskflow::transform_inclusive_scan(B first, E last, D d_first, BOP bop, UOP uop) and tf::Taskflow::transform_inclusive_scan(B first, E last, D d_first, BOP bop, UOP uop, T init). For example, the code below performs an inclusive scan over five transformed elements: @code{.cpp} std::vector input = {1, 2, 3, 4, 5}; std::vector output(input.size()); taskflow.transform_inclusive_scan( input.begin(), input.end(), output.begin(), std::plus{}, [] (int item) { return -item; } ); executor.run(taskflow).wait(); // output is {-1, -3, -6, -10, -15} @endcode You can also associate the transform-inclusive scan with an initial value using tf::Taskflow::transform_inclusive_scan(B first, E last, D d_first, BOP bop, UOP uop, T init). Only elements in the input range will be transformed using @c uop, i.e., the initial value @c init does not participate in @c uop. @code{.cpp} std::vector input = {1, 2, 3, 4, 5}; std::vector output(input.size()); taskflow.transform_inclusive_scan( input.begin(), input.end(), output.begin(), std::plus{}, [] (int item) { return -item; }, -1 ); executor.run(taskflow).wait(); // output is {-2, -4, -7, -11, -16} @endcode @section CreateAParallelExclusiveScanTask Create a Parallel Exclusive Scan Task tf::Taskflow::exclusive_scan(B first, E last, D d_first, T init, BOP bop) generates an @em exclusive scan with the given initial value. The N-th element of the output range is the sum of the first N-1 input elements, so the N-th input element is included. For example, the code below performs an exclusive scan over five elements with an initial value -1: @code{.cpp} std::vector input = {1, 2, 3, 4, 5}; std::vector output(input.size()) taskflow.exclusive_scan( input.begin(), input.end(), output.begin(), -1, std::plus{} ); executor.run(taskflow).wait(); // output is {-1, 0, 2, 5, 9} @endcode The output range may be the same as the input range, in which the scan operation is @em in-place with results written to the input range. For example, the code below performs an in-place exclusive scan over five elements with an initial -1: @code{.cpp} std::vector input = {1, 2, 3, 4, 5}; std::vector output(input.size()); taskflow.exclusive_scan( input.begin(), input.end(), output.begin(), -1, std::plus{} ); executor.run(taskflow).wait(); // output is {-1, 0, 2, 5, 9} @endcode @section CreateAParallelTransformExclusiveScanTask Create a Parallel Transform-Exclusive Scan Task You can transform elements in the input range before running exclusive scan using tf::Taskflow::transform_exclusive_scan(B first, E last, D d_first, T init, BOP bop, UOP uop). For example, the code below performs an exclusive scan over five transformed elements: @code{.cpp} std::vector input = {1, 2, 3, 4, 5}; std::vector output(input.size()); taskflow.transform_exclusive_scan( input.begin(), input.end(), input.begin(), -1, std::plus{}, [](int item) { return -item; } ); executor.run(taskflow).wait(); // output is {-1, -2, -4, -7, -11} @endcode */ }