ParallelIterations Parallel Iterations Include the Header ParallelIterations_1ParallelIterationsIncludeTheHeader Create an Index-based Parallel-Iteration Task ParallelIterations_1A1IndexBasedParallelFor Capture Indices by Reference ParallelIterations_1ParallelForEachCaptureIndicesByReference Create an Iterator-based Parallel-Iteration Task ParallelIterations_1A1IteratorBasedParallelFor Capture Iterators by Reference ParallelIterations_1ParallelForEachCaptureIteratorsByReference Configure a Partitioner ParallelIterations_1ParallelIterationsConfigureAPartitioner Taskflow provides template functions for constructing tasks to perform parallel iterations over ranges of items. Include the Header You need to include the header file, taskflow/algorithm/for_each.hpp, for using parallel-iteration algorithms. #include<taskflow/algorithm/for_each.hpp> Create an Index-based Parallel-Iteration Task Index-based parallel-for performs parallel iterations over a range [first, last) with the given step size. The task created by tf::Taskflow::for_each_index(B first, E last, S step, C callable, P&& part) represents parallel execution of the following loop: //positivestep for(autoi=first;i<last;i+=step){ callable(i); } //negativestep for(autoi=first;i>last;i+=step){ callable(i); } We support only integer-based range. The range can go positive or negative direction. taskflow.for_each_index(0,100,2,[](inti){});//50loopswitha+step taskflow.for_each_index(100,0,-2,[](inti){});//50loopswitha-step Notice that either positive or negative direction is defined in terms of the range, [first, last), where end is excluded. In the positive case, the 50 items are 0, 2, 4, 6, 8, ..., 96, 98. In the negative case, the 50 items are 100, 98, 96, 04, ... 4, 2. An example of the Taskflow graph for the positive case under 12 workers is depicted below: Capture Indices by Reference You can pass indices by reference using std::ref to marshal parameter update between dependent tasks. This is especially useful when the range indices are unknown at the time of creating a for-each-index task, but is initialized from another task. int*vec; intfirst,last; autoinit=taskflow.emplace([&](){ first=0; last=1000; vec=newint[1000]; }); autopf=taskflow.for_each_index(std::ref(first),std::ref(last),1, [&](inti){ std::cout<<"paralleliterationonindex"<<vec[i]<<'\n'; } ); //wrong!mustusestd::ref,orfirstandlastarecapturedbycopy //autopf=taskflow.for_each_index(first,last,1,[&](inti){ //std::cout<<"paralleliterationonindex"<<vec[i]<<'\n'; //}); init.precede(pf); When init finishes, the parallel-for task pf will see first as 0 and last as 1000 and performs parallel iterations over the 1000 items. Create an Iterator-based Parallel-Iteration Task Iterator-based parallel-for performs parallel iterations over a range specified by two STL-styled iterators, first and last. The task created by tf::Taskflow::for_each(B first, E last, C callable, P&& part) represents a parallel execution of the following loop: for(autoi=first;i<last;i++){ callable(*i); } tf::Taskflow::for_each(B first, E last, C callable, P&& part) simultaneously applies the callable to the object obtained by dereferencing every iterator in the range [first, last). It is user's responsibility for ensuring the range is valid within the execution of the parallel-for task. Iterators must have the post-increment operator ++ defined. std::vector<int>vec={1,2,3,4,5}; taskflow.for_each(vec.begin(),vec.end(),[](inti){ std::cout<<"parallelforonitem"<<i<<'\n'; }); std::list<std::string>list={"hi","from","t","a","s","k","f","low"}; taskflow.for_each(list.begin(),list.end(),[](conststd::string&str){ std::cout<<"parallelforonitem"<<str<<'\n'; }); Capture Iterators by Reference Similar to tf::Taskflow::for_each_index, iterators of tf::Taskflow::for_each are templated to allow capturing range parameters by reference, such that one task can set up the range before another task performs the parallel-for algorithm. For example: std::vector<int>vec; std::vector<int>::iteratorfirst,last;; tf::Taskinit=taskflow.emplace([&](){ vec.resize(1000); first=vec.begin(); last=vec.end(); }); tf::Taskpf=taskflow.for_each(std::ref(first),std::ref(last),[&](inti){ std::cout<<"paralleliterationonitem"<<i<<'\n'; }); //wrong!mustusestd::ref,orfirstandlastarecapturedbycopy //tf::Taskpf=taskflow.for_each(first,last,[&](inti){ //std::cout<<"paralleliterationonitem"<<i<<'\n'; //}); init.precede(pf); When init finishes, the parallel-for task pf will see first pointing to the beginning of vec and last pointing to the end of vec and performs parallel iterations over the 1000 items. The two tasks form an end-to-end task graph where the parameters of parallel-for are computed on the fly. Configure a Partitioner You can configure a partitioner for parallel-iteration tasks to run with different scheduling methods, such as guided partitioning, dynamic partitioning, and static partitioning. The following example creates two parallel-iteration tasks using two different partitioners, one with the static partitioning algorithm and another one with the guided partitioning algorithm: std::vector<int>vec(1024,0); tf::ExecutionPolicy<tf::StaticPartitioner>static_partitioner; tf::ExecutionPolicy<tf::GuidedPartitioner>guided_partitioner; //createaparallel-iterationtaskwithstaticpartitioner taskflow.for_each( vec.begin(),vec.end(),[&](inti){ std::cout<<"paralleliterationonitem"<<i<<'\n'; }, static_partitioner ); //createaparallel-iterationtaskwithguidedpartitioner taskflow.for_each( vec.begin(),vec.end(),[&](inti){ std::cout<<"paralleliterationonitem"<<i<<'\n'; }, guided_partitioner ); By default, parallel-iteration tasks use tf::DefaultPartitioner if no partitioner is specified.