namespace tf { /** @page GPUTaskingsyclFlow GPU Tasking (%syclFlow) %Taskflow supports SYCL, a general-purpose heterogeneous programming model, to program heterogeneous tasks in a single-source C++ environment. This chapter discusses how to write SYCL C++ kernel code with %Taskflow based on @sycl20_spec. @tableofcontents @section GPUTaskingsyclFlowIncludeTheHeader Include the Header You need to include the header file, `%taskflow/sycl/syclflow.hpp`, for using tf::syclFlow. @section Create_a_syclFlow Create a syclFlow %Taskflow introduces a task graph-based programming model, tf::syclFlow, to program SYCL tasks and their dependencies. A %syclFlow is a task in a taskflow and is associated with a SYCL queue to execute kernels on a SYCL device. To create a %syclFlow task, emplace a callable with an argument of type tf::syclFlow and associate it with a SYCL queue. The following example (@c saxpy.cpp) implements the canonical saxpy (A·X Plus Y) task graph using tf::syclFlow. @code{.cpp} 1: #include 2: 3: constexpr size_t N = 1000000; 4: 5: int main() { 6: 7: tf::Executor executor; 8: tf::Taskflow taskflow("saxpy example"); 9: 10: sycl::queue queue{sycl::gpu_selector{}}; 11: 12: // allocate shared memory that is accessible on both host and device 13: float* X = sycl::malloc_shared(N, queue); 14: float* Y = sycl::malloc_shared(N, queue); 15: 16: // create a syclFlow to perform the saxpy operation 17: taskflow.emplace_on([&](tf::syclFlow& sf){ 18: tf::syclTask fillX = sf.fill(X, 1.0f, N).name("fillX"); 19: tf::syclTask fillY = sf.fill(Y, 2.0f, N).name("fillY"); 20: tf::syclTask saxpy = sf.parallel_for(sycl::range<1>(N), 21: [=] (sycl::id<1> id) { 22: X[id] = 3.0f * X[id] + Y[id]; 23: } 24: ).name("saxpy"); 25: saxpy.succeed(fillX, fillY); 26: }, queue).name("syclFlow"); 27: 28: executor.run(taskflow).wait(); // run the taskflow 29: taskflow.dump(std::cout); // dump the taskflow 30: 31: // free the shared memory to avoid memory leak 32: sycl::free(X, queue); 33: sycl::free(Y, queue); 34: } @endcode @dotfile images/syclflow_saxpy.dot Debrief: @li Lines 7-8 create a taskflow and an executor @li Lines 10 creates a SYCL queue on a default-selected GPU device @li Lines 13-14 allocate shared memory that is accessible on both host and device @li Lines 17-26 creates a %syclFlow to define the saxpy task graph that contains: + one fill task to fill the memory area @c X with @c 1.0f + one fill task to fill the memory area @c Y with @c 2.0f + one kernel task to perform the saxpy operation on the GPU @li Lines 28-29 executes the taskflow and dumps its graph to a DOT format @li Lines 32-33 deallocates the shared memory to avoid memory leak tf::syclFlow is a lightweight task graph-based programming layer atop SYCL. We do not expend yet another effort on simplifying kernel programming but focus on tasking SYCL operations and their dependencies. This organization lets users fully take advantage of SYCL features that are commensurate with their domain knowledge, while leaving difficult task parallelism details to %Taskflow. @section Compile_a_syclFlow_program Compile a syclFlow Program Use DPC++ clang to compile a %syclFlow program: @code{.shell-session} ~$ clang++ -fsycl -fsycl-unnamed-lambda \ -fsycl-targets=nvptx64-nvidia-cuda \ # for CUDA target -I path/to/taskflow -pthread -std=c++17 saxpy.cpp -o saxpy ~$ ./saxpy @endcode Please visit the page @ref CompileTaskflowWithSYCL for more details. @section CreateMemoryOperationTasks Create Memory Operation Tasks tf::syclFlow provides a set of methods for creating tasks to perform common memory operations, such as copy, set, and fill, on memory area pointed to by unified shared memory (USM) pointers. The following example creates a %syclFlow task of two copy operations and one fill operation that set the first @c N/2 elements in the vector to @c -1. @code{.cpp} sycl::queue queue; size_t N = 1000; int* hvec = new int[N] (100); int* dvec = sycl::malloc_device(N, queue); // create a syclflow task to set the first N/2 elements to -1 taskflow.emplace_on([&](tf::syclFlow& syclflow){ tf::syclTask ch2d = syclflow.copy(dvec, hvec, N); tf::syclTask fill = syclflow.fill(dvec, -1, N/2); tf::syclTask cd2h = syclflow.copy(hvec, dvec, N); fill.precede(cd2h) .succeed(ch2d); }, queue); executor.run(taskflow).wait(); // inspect the result for(size_t i=0; i, where @c N is one, two or three. Each work item in such a kernel executes independently across a set of partitioned work groups. tf::syclFlow::parallel_for defines several variants to create a kernel task. The following variant pairs up a @c sycl::range and a @c sycl::id to set each element in @c data to @c 1.0f when it is not necessary to query the global range of the index space being executed across. @code{.cpp} tf::syclTask task = syclflow.parallel_for( sycl::range<1>(N), [data](sycl::id<1> id){ data[id] = 1.0f; } ); @endcode As the same example, the following variant enables low-level functionality of work items and work groups using @c sycl::nd_range and @c sycl::nd_item. This becomes valuable when an execution requires groups of work items that communicate and synchronize. @code{.cpp} // partition the N-element range to N/M work groups each of M work items tf::syclTask task = syclflow.parallel_for( sycl::nd_range<1>{sycl::range<1>(N), sycl::range<1>(M)}, [data](sycl::nd_item<1> item){ auto id = item.get_global_linear_id(); data[id] = 1.0f; // query detailed work group information // item.get_group_linear_id(); // item.get_local_linear_id(); // ... } ); @endcode All the kernel methods defined in the SYCL queue are applicable for tf::syclFlow::parallel_for. @section CreateCommandGroupFunctionObjectTasks Create Command Group Function Object Tasks SYCL provides a way to encapsulate a device-side operation and all its data and event dependencies in a single command group function object. The function object accepts an argument of command group @em handler constructed by the SYCL runtime. Command group handler is the heart of SYCL programming as it defines pretty much all kernel-related methods, including submission, execution, and synchronization. You can directly create a SYCL task from a command group function object using tf::syclFlow::on. @code{.cpp} tf::syclTask task = syclflow.on( [=] (sycl::handler& handler) { handler.require(accessor); handler.single_task([=](){ // place a single-threaded kernel function data[0] = 1; ); } ); @endcode @section OffloadAsyclFlow Offload a syclFlow By default, the executor offloads and executes the %syclFlow once. When a %syclFlow is being executed, its task graph will be materialized by the %Taskflow runtime and submitted to its associated SYCL queue in a topological order of task dependencies defined in that graph. You can explicitly execute a %syclFlow using different offload methods: @code{.cpp} taskflow.emplace_on([](tf::syclFlow& sf) { // ... create SYCL tasks sf.offload(); // offload the syclFlow and run it once sf.offload_n(10); // offload the syclFlow and run it 10 times sf.offload_until([repeat=5] () mutable { return repeat-- == 0; }) // five times }, queue); @endcode After you offload a %syclFlow, it is considered executed, and the executor will @em not run an offloaded %syclFlow after leaving the %syclFlow task callable. On the other hand, if a %syclFlow is not offloaded, the executor runs it once. For example, the following two versions represent the same execution logic. @code{.cpp} // version 1: explicitly offload a syclFlow once taskflow.emplace_on([](tf::syclFlow& sf) { sf.single_task([](){}); sf.offload(); }, queue); // version 2 (same as version 1): executor offloads the syclFlow once taskflow.emplace_on([](tf::syclFlow& sf) { sf.single_task([](){}); }, queue); @endcode @section UpdateAsyclFlow Update a syclFlow You can update a SYCL task from an offloaded %syclFlow and @em rebind it to another task type. For example, you can rebind a memory operation task to a parallel-for kernel task from an offloaded %syclFlow and vice versa. @code{.cpp} size_t N = 10000; sycl::queue queue; int* data = sycl::malloc_shared(N, queue); taskflow.emplace_on([&](tf::syclFlow& syclflow){ // create a task to set each element to -1 tf::syclTask task = syclflow.fill(data, -1, N); syclflow.offload(); std::for_each(data, data+N, [](int i){ assert(data[i] == -1); }); // rebind the task to a parallel-for kernel task setting each element to 100 syclflow.rebind_parallel_for(task, sycl::range<1>(N), [](sycl::id<1> id){ data[id] = 100; }); syclflow.offload(); std::for_each(data, data+N, [data](int i){ assert(data[i] == 100); }); }, queue); executor.run(taskflow).wait(); @endcode Each method of task creation in tf::syclFlow has a corresponding method of rebinding a task to that task type (e.g., tf::syclFlow::on and tf::syclFlow::rebind_on, tf::syclFlow::parallel_for and tf::syclFlow::parallel_for). @section UsesyclFlowInAStandaloneEnvironment Use syclFlow in a Standalone Environment You can use tf::syclFlow in a standalone environment without going through tf::Taskflow and offloads it to a SYCL device from the caller thread. All the tasking methods we have discussed so far apply to the standalone use. @code{.cpp} sycl::queue queue; tf::syclFlow sf(queue); // create a standalone syclFlow tf::syclTask h2d_x = sf.copy(dx, hx.data(), N).name("h2d_x"); tf::syclTask h2d_y = sf.copy(dy, hy.data(), N).name("h2d_y"); tf::syclTask d2h_x = sf.copy(hx.data(), dx, N).name("d2h_x"); tf::syclTask d2h_y = sf.copy(hy.data(), dy, N).name("d2h_y"); tf::syclTask saxpy = sf.parallel_for( sycl::range<1>(N), [=] (sycl::id<1> id) { dx[id] = 2.0f * dx[id] + dy[id]; } ).name("saxpy"); saxpy.succeed(h2d_x, h2d_y) // kernel runs after host-to-device copy .precede(d2h_x, d2h_y); // kernel runs before device-to-host copy sf.offload(); // offload and run the standalone syclFlow once @endcode @note In the standalone mode, a written %syclFlow will not be executed untile you explicitly call an offload method, as there is neither a taskflow nor an executor. */ }