/* -*- Mode: C++; tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- */ #ifndef FF_QUEUE_HPP #define FF_QUEUE_HPP /*! * \file ff_queue.hpp * \ingroup aux_classes * * \brief Experimental. Not currently used. * */ /* *************************************************************************** * FastFlow is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License version 3 as * published by the Free Software Foundation. * Starting from version 3.0.1 FastFlow is dual licensed under the GNU LGPLv3 * or MIT License (https://github.com/ParaGroup/WindFlow/blob/vers3.x/LICENSE.MIT) * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * **************************************************************************** */ #include #include #include #include #include #include #include #include #include #include #include #ifdef _MSC_VER # pragma warning (disable: 4200) // nonstandard extension used : zero-sized array in struct/union # define abort() __debugbreak(), (abort)() #endif #define INLINE static __inline #define NOINLINE #if !defined(CACHE_LINE_SIZE) #define CACHE_LINE_SIZE 128 #endif INLINE void* aligned_malloc(size_t sz) { void* mem; if (posix_memalign(&mem, CACHE_LINE_SIZE, sz)) return 0; return mem; } INLINE void aligned_free(void* mem) { free(mem); } INLINE void atomic_addr_store_release(void* volatile* addr, void* val) { __asm __volatile ("" ::: "memory"); addr[0] = val; } INLINE void* atomic_addr_load_acquire(void* volatile* addr) { void* val; val = addr[0]; __asm __volatile ("" ::: "memory"); return val; } class ff_queue { public: ff_queue (size_t bucket_size, size_t max_bucket_count) : bucket_size_ (bucket_size) , max_bucket_count_ (max_bucket_count) { bucket_count_ = 0; bucket_t* bucket = alloc_bucket(bucket_size_); head_pos_ = bucket->data; tail_pos_ = bucket->data; tail_end_ = bucket->data + bucket_size_; tail_next_ = 0; tail_bucket_ = bucket; last_bucket_ = bucket; *(void**)head_pos_ = (void*)1; pad_[0] = 0; } ~ff_queue () { bucket_t* bucket = last_bucket_; while (bucket != 0) { bucket_t* next_bucket = bucket->next; aligned_free(bucket); bucket = next_bucket; } } char* enqueue_prepare (size_t sz) { assert(((uintptr_t)tail_pos_ % sizeof(void*)) == 0); size_t msg_size = ((uintptr_t)(sz + sizeof(void*) - 1) & ~(sizeof(void*) - 1)) + sizeof(void*); if ((size_t)(tail_end_ - tail_pos_) >= msg_size + sizeof(void*)) { tail_next_ = tail_pos_ + msg_size; return tail_pos_ + sizeof(void*); } else { return enqueue_prepare_slow(sz); } } void enqueue_commit () { *(char* volatile*)tail_next_ = (char*)1; atomic_addr_store_release((void* volatile*)tail_pos_, tail_next_); tail_pos_ = tail_next_; } char* dequeue_prepare () { assert(((uintptr_t)head_pos_ % sizeof(void*)) == 0); void* next = atomic_addr_load_acquire((void* volatile*)head_pos_); if (((uintptr_t)next & 1) == 0) { char* msg = head_pos_ + sizeof(void*); return msg; } else if (((uintptr_t)next & ~1) == 0) { return 0; } else { atomic_addr_store_release((void* volatile*)&head_pos_, (char*)((uintptr_t)next & ~1)); return dequeue_prepare(); } } void dequeue_commit () { char* next = *(char* volatile*)head_pos_; assert(next != 0); atomic_addr_store_release((void* volatile*)&head_pos_, next); } private: struct bucket_t { bucket_t* next; size_t size; char data [0]; }; char* volatile head_pos_; char pad_ [CACHE_LINE_SIZE]; char* tail_pos_; char* tail_end_; char* tail_next_; bucket_t* tail_bucket_; bucket_t* last_bucket_; size_t const bucket_size_; size_t const max_bucket_count_; size_t bucket_count_; bucket_t* alloc_bucket (size_t sz) { bucket_t* bucket = (bucket_t*)aligned_malloc(sizeof(bucket_t) + sz); if (bucket == 0) throw std::bad_alloc(); bucket->next = 0; bucket->size = sz; bucket_count_ += 1; return bucket; } NOINLINE char* enqueue_prepare_slow (size_t sz) { size_t bucket_size = bucket_size_; if (bucket_size < sz + 2 * sizeof(void*)) bucket_size = sz + 2 * sizeof(void*); bucket_t* bucket = 0; char* head_pos = (char*)atomic_addr_load_acquire((void* volatile*)&head_pos_); while (head_pos < last_bucket_->data || head_pos >= last_bucket_->data + last_bucket_->size) { bucket = last_bucket_; last_bucket_ = bucket->next; bucket->next = 0; assert(last_bucket_ != 0); if ((bucket->size < bucket_size) || (bucket_count_ > max_bucket_count_ && (head_pos < last_bucket_->data || head_pos >= last_bucket_->data + last_bucket_->size))) { aligned_free(bucket); bucket = 0; continue; } break; } if (bucket == 0) bucket = alloc_bucket(bucket_size); *(void* volatile*)bucket->data = (void*)1; atomic_addr_store_release((void* volatile*)tail_pos_, (void*)((uintptr_t)bucket->data | 1)); tail_pos_ = bucket->data; tail_end_ = tail_pos_ + bucket_size; tail_bucket_->next = bucket; tail_bucket_ = bucket; return enqueue_prepare(sz); } ff_queue (ff_queue const&); void operator = (ff_queue const&); }; #endif /* FF_QUEUE_HPP */