namespace tf { /** @page TextProcessingPipeline Text Processing Pipeline We study a text processing pipeline that finds the most frequent character of each string from an input source. Parallelism exhibits in the form of a three-stage pipeline that transforms the input string to a final pair type. @tableofcontents @section FormulateTheTextProcessingPipelineProblem Formulate the Text Processing Pipeline Problem Given an input vector of strings, we want to compute the most frequent character for each string using a series of transform operations. For example: @code{.shell-session} # input strings abade ddddf eefge xyzzd ijjjj jiiii kkijk # output a:2 d:4 e:3 z:2 j:4 i:4 k:3 @endcode We decompose the algorithm into three stages: 1. read a `%std::string` from the input vector 2. generate a `%std::unorder_map` frequency map from the string 3. reduce the most frequent character to a `%std::pair` from the map The first and the third stages process inputs and generate results in serial, and the second stage can run in parallel. The algorithm is a perfect fit to pipeline parallelism, as different stages can overlap with each other in time across parallel lines. @section CreateAParallelTextPipeline Create a Text Processing Pipeline We create a pipeline of three pipes (stages) and two parallel lines to solve the problem. The number of parallel lines is a tunable parameter. In most cases, we can just use `std::thread::hardware_concurrency` as the line count. The first pipe reads an input string from the vector in order, the second pipe transforms the input string from the first pipe to a frequency map in parallel, and the third pipe reduces the frequency map to find the most frequent character. The overall implementation is shown below: @code{.cpp} #include #include // Function: format the map std::string format_map(const std::unordered_map& map) { std::ostringstream oss; for(const auto& [i, j] : map) { oss << i << ':' << j << ' '; } return oss.str(); } int main() { tf::Taskflow taskflow("text-filter pipeline"); tf::Executor executor; const size_t num_lines = 2; // input data std::vector input = { "abade", "ddddf", "eefge", "xyzzd", "ijjjj", "jiiii", "kkijk" }; // custom data storage using data_type = std::variant< std::string, std::unordered_map, std::pair >; std::array mybuffer; // the pipeline consists of three pipes (serial-parallel-serial) // and up to two concurrent scheduling tokens tf::Pipeline pl(num_lines, // first pipe processes the input data tf::Pipe{tf::PipeType::SERIAL, [&](tf::Pipeflow& pf) { if(pf.token() == input.size()) { pf.stop(); } else { printf("stage 1: input token = %s\n", input[pf.token()].c_str()); mybuffer[pf.line()] = input[pf.token()]; } }}, // second pipe counts the frequency of each character tf::Pipe{tf::PipeType::PARALLEL, [&](tf::Pipeflow& pf) { std::unordered_map map; for(auto c : std::get(mybuffer[pf.line()])) { map[c]++; } printf("stage 2: map = %s\n", format_map(map).c_str()); mybuffer[pf.line()] = map; }}, // third pipe reduces the most frequent character tf::Pipe{tf::PipeType::SERIAL, [&mybuffer](tf::Pipeflow& pf) { auto& map = std::get>(mybuffer[pf.line()]); auto sol = std::max_element(map.begin(), map.end(), [](auto& a, auto& b){ return a.second < b.second; }); printf("stage 3: %c:%zu\n", sol->first, sol->second); // not necessary to store the last-stage data, just for demo purpose mybuffer[pf.line()] = *sol; }} ); // build the pipeline graph using composition tf::Task init = taskflow.emplace([](){ std::cout << "ready\n"; }) .name("starting pipeline"); tf::Task task = taskflow.composed_of(pl) .name("pipeline"); tf::Task stop = taskflow.emplace([](){ std::cout << "stopped\n"; }) .name("pipeline stopped"); // create task dependency init.precede(task); task.precede(stop); // dump the pipeline graph structure (with composition) taskflow.dump(std::cout); // run the pipeline executor.run(taskflow).wait(); return 0; } @endcode @subsection TextPipelineDefineTheDataBuffer Define the Data Buffer %Taskflow does not provide any data abstraction to perform pipeline scheduling, but give users full control over data management in their applications. In this example, we create an one-dimensional buffer of a @std_variant data type to store the output of each pipe in a uniform storage: @code{.cpp} using data_type = std::variant< std::string, std::unordered_map, std::pair >; std::array, num_lines> mybuffer; @endcode @note One-dimensional buffer is sufficient because %Taskflow enables only one scheduling token per line at a time. @subsection TextPipelineDefineThePipes Define the Pipes The first pipe reads one string and puts it in the corresponding entry at the buffer, `mybuffer[pf.line()]`. Since we read in each string in order, we declare the pipe as a serial type: @code{.cpp} tf::Pipe{tf::PipeType::SERIAL, [&](tf::Pipeflow& pf) { if(pf.token() == input.size()) { pf.stop(); } else { mybuffer[pf.line()] = input[pf.token()]; printf("stage 1: input token = %s\n", input[pf.token()].c_str()); } }}, @endcode The second pipe needs to get the input string from the previous pipe and then transforms that input string into a frequency map that records the occurrence of each character in the string. As multiple transforms can operate simultaneously, we declare the pipe as a parallel type: @code{.cpp} tf::Pipe{tf::PipeType::PARALLEL, [&](tf::Pipeflow& pf) { std::unordered_map map; for(auto c : std::get(mybuffer[pf.line()])) { map[c]++; } mybuffer[pf.line()] = map; printf("stage 2: map = %s\n", format_map(map).c_str()); }} @endcode Similarly, the third pipe needs to get the input frequency map from the previous pipe and then reduces the result to find the most frequent character. We may not need to store the result in the buffer but other places defined by the application (e.g., an output file). As we want to output the result in the same order as the input, we declare the pipe as a serial type: @code{.cpp} tf::Pipe{tf::PipeType::SERIAL, [&mybuffer](tf::Pipeflow& pf) { auto& map = std::get>(mybuffer[pf.line()]); auto sol = std::max_element(map.begin(), map.end(), [](auto& a, auto& b){ return a.second < b.second; }); printf("stage 3: %c:%zu\n", sol->first, sol->second); }} @endcode @subsection TextPipelineDefineTheTaskGraph Define the Task Graph To build up the taskflow graph for the pipeline, we create a module task out of the pipeline structure and connect it with two tasks that outputs messages before and after the pipeline: @code{.cpp} tf::Task init = taskflow.emplace([](){ std::cout << "ready\n"; }) .name("starting pipeline"); tf::Task task = taskflow.composed_of(pl) .name("pipeline"); tf::Task stop = taskflow.emplace([](){ std::cout << "stopped\n"; }) .name("pipeline stopped"); init.precede(task); task.precede(stop); @endcode @subsection TextPipelineSubmitTheTaskGraph Submit the Task Graph Finally, we submit the taskflow to the execution and run it once: @code{.cpp} executor.run(taskflow).wait(); @endcode As the second stage is a parallel pipe, the output may interleave. One possible result is shown below: @code{.shell-session} ready stage 1: input token = abade stage 1: input token = ddddf stage 2: map = f:1 d:4 stage 2: map = e:1 d:1 a:2 b:1 stage 3: a:2 stage 1: input token = eefge stage 2: map = g:1 e:3 f:1 stage 3: d:4 stage 1: input token = xyzzd stage 3: e:3 stage 1: input token = ijjjj stage 2: map = z:2 x:1 d:1 y:1 stage 3: z:2 stage 1: input token = jiiii stage 2: map = j:4 i:1 stage 3: j:4 stage 2: map = i:4 j:1 stage 1: input token = kkijk stage 3: i:4 stage 2: map = j:1 k:3 i:1 stage 3: k:3 stopped @endcode We can see seven outputs at the third stage that show the most frequent character for each of the seven strings in order (`a:2`, `d:4`, `e:3`, `z:2`, `j:4`, `i:4`, `k:3`). The taskflow graph of this pipeline workload is shown below: @dotfile images/text_processing_pipeline.dot */ }