namespace tf { /** @page CompileTaskflowWithCUDA Compile Taskflow with CUDA @tableofcontents @section InstallCUDACompiler Install CUDA Compiler To compile %Taskflow with CUDA code, you need a @c nvcc compiler. Please visit the official page of Downloading CUDA Toolkit. @section CompileTaskflowWithCUDADirectly Compile Source Code Directly %Taskflow's GPU programming interface for CUDA is tf::cudaFlow. Consider the following `simple.cu` program that launches a single kernel function to output a message: @code{.cpp} #include #include #include int main(int argc, const char** argv) { tf::Executor executor; tf::Taskflow taskflow; tf::Task task1 = taskflow.emplace([](){}).name("cpu task"); tf::Task task2 = taskflow.emplace([](){ // create a cudaFlow of a single-threaded task tf::cudaFlow cf; cf.single_task([] __device__ () { printf("hello cudaFlow!\n"); }); // launch the cudaflow through a stream tf::cudaStream stream; cf.run(stream); stream.synchronize(); }).name("gpu task"); task1.precede(task2); executor.run(taskflow).wait(); return 0; } @endcode The easiest way to compile %Taskflow with CUDA code (e.g., %cudaFlow, kernels) is to use @nvcc: @code{.shell-session} ~$ nvcc -std=c++17 -I path/to/taskflow/ --extended-lambda simple.cu -o simple ~$ ./simple hello cudaFlow! @endcode @section CompileTaskflowWithCUDASeparately Compile Source Code Separately Large GPU applications often compile a program into separate objects and link them together to form an executable or a library. You can compile your CPU code and GPU code separately with %Taskflow using @c nvcc and other compilers (such as @c g++ and @c clang++). Consider the following example that defines two tasks on two different pieces (@c main.cpp and @c cudaflow.cpp) of source code: @code{.cpp} // main.cpp #include tf::Task make_cudaflow(tf::Taskflow& taskflow); // create a cudaFlow task int main() { tf::Executor executor; tf::Taskflow taskflow; tf::Task task1 = taskflow.emplace([](){ std::cout << "main.cpp!\n"; }) .name("cpu task"); tf::Task task2 = make_cudaflow(taskflow); task1.precede(task2); executor.run(taskflow).wait(); return 0; } @endcode @code{.cpp} // cudaflow.cpp #include #include tf::Task make_cudaflow(tf::Taskflow& taskflow) { return taskflow.emplace([](){ // create a cudaFlow of a single-threaded task tf::cudaFlow cf; cf.single_task([] __device__ () { printf("cudaflow.cpp!\n"); }); // launch the cudaflow through a stream tf::cudaStream stream; cf.run(stream); stream.synchronize(); }).name("gpu task"); } @endcode Compile each source to an object (@c g++ as an example): @code{.shell-session} ~$ g++ -std=c++17 -I path/to/taskflow -c main.cpp -o main.o ~$ nvcc -std=c++17 --extended-lambda -x cu -I path/to/taskflow \ -dc cudaflow.cpp -o cudaflow.o ~$ ls # now we have the two compiled .o objects, main.o and cudaflow.o main.o cudaflow.o @endcode The @c --extended-lambda option tells @c nvcc to generate GPU code for the lambda defined with __device__. The -x cu tells @c nvcc to treat the input files as @c .cu files containing both CPU and GPU code. By default, @c nvcc treats @c .cpp files as CPU-only code. This option is required to have @c nvcc generate device code here, but it is also a handy way to avoid renaming source files in larger projects. The @c –dc option tells @c nvcc to generate device code for later linking. You may also need to specify the target architecture to tell @c nvcc to target on a compatible SM architecture using the option @-arch. For instance, the following command requires device code linking to have compute capability 7.5 or later: @code{.shell-session} ~$ nvcc -std=c++17 --extended-lambda -x cu -arch=sm_75 -I path/to/taskflow \ -dc cudaflow.cpp -o cudaflow.o @endcode @subsection CompileTaskflowWithCUDANaiveLinking Link Objects Using nvcc Using @c nvcc to link compiled object code is nothing special but replacing the normal compiler with @c nvcc and it takes care of all the necessary steps: @code{.shell-session} ~$ nvcc main.o cudaflow.o -o main # run the main program ~$ ./main main.cpp! cudaflow.cpp! @endcode @subsection CompileTaskflowWithCUDADifferentLinkers Link Objects Using Different Linkers You can choose to use a compiler other than @c nvcc for the final link step. Since your CPU compiler does not know how to link CUDA device code, you have to add a step in your build to have @c nvcc link the CUDA device code, using the option @c -dlink: @code{.shell-session} ~$ nvcc -o gpuCode.o -dlink main.o cudaflow.o @endcode This step links all the device object code and places it into @c gpuCode.o. @note Note that this step does not link the CPU object code and discards the CPU object code in @c main.o and @c cudaflow.o. To complete the link to an executable, you can use, for example, @c ld or @c g++. @code{.shell-session} # replace /usr/local/cuda/lib64 with your own CUDA library installation path ~$ g++ -pthread -L /usr/local/cuda/lib64/ -lcudart \ gpuCode.o main.o cudaflow.o -o main # run the main program ~$ ./main main.cpp! cudaflow.cpp! @endcode We give @c g++ all of the objects again because it needs the CPU object code, which is not in @c gpuCode.o. The device code stored in the original objects, @c main.o and @c cudaflow.o, does not conflict with the code in @c gpuCode.o. @c g++ ignores device code because it does not know how to link it, and the device code in @c gpuCode.o is already linked and ready to go. @note This intentional ignorance is extremely useful in large builds where intermediate objects may have both CPU and GPU code. In this case, we just let the GPU and CPU linkers each do its own job, noting that the CPU linker is always the last one we run. The CUDA Runtime API library is automatically linked when we use @c nvcc for linking, but we must explicitly link it (@c -lcudart) when using another linker. */ }