mesytec-mnode/external/taskflow-3.8.0/doxygen/algorithms/scalable_pipeline.dox

228 lines
7.5 KiB
Text
Raw Normal View History

2025-01-04 01:25:05 +01:00
namespace tf {
/** @page TaskParallelScalablePipeline Task-parallel Scalable Pipeline
@tableofcontents
Unlike tf::Pipeline (see @ref TaskParallelPipeline) that instantiates all pipes
at the construction time,
%Taskflow provides a scalable alternative called tf::ScalablePipeline
to allow variable assignments of pipes using range iterators.
A scalable pipeline is thus more flexible for applications to
create a pipeline scheduling framework whose pipeline structure
depends on runtime variables.
@section IncludeTheScalablePipelineHeader Include the Header
You need to include the header file, <tt>%taskflow/algorithm/pipeline.hpp</tt>, for creating
a scalable pipeline scheduling framework.
@code{.cpp}
#include <taskflow/algorithm/pipeline.hpp>
@endcode
@section CreateAScalablePipelineModuleTask Create a Scalable Pipeline Module Task
Similar to tf::Pipeline, tf::ScalablePipeline is a composable graph object to
implement a <i>pipeline scheduling framework</i> in a taskflow.
The key difference between tf::Pipeline and tf::ScalablePipeline is that a scalable
pipeline can accept @em variable assignments of pipes rather than
instantiating all pipes at construction or programming time.
Users define a linear range of pipes, each of the same callable type,
and apply that range to construct a scalable pipeline.
Between successive runs, users can reset the pipeline to a different range of pipes.
The following code creates a scalable pipeline that uses four parallel lines
to schedule tokens through three serial pipes in the given vector,
then resetting that pipeline to a new range of five serial pipes:
@code{.cpp}
tf::Taskflow taskflow("pipeline");
tf::Executor executor;
const size_t num_lines = 4;
// create data storage
std::array<int, num_lines> buffer;
// define the pipe callable
auto pipe_callable = [&buffer] (tf::Pipeflow& pf) mutable {
switch(pf.pipe()) {
// first stage generates only 5 scheduling tokens and saves the
// token number into the buffer.
case 0: {
if(pf.token() == 5) {
pf.stop();
}
else {
printf("stage 1: input token = %zu\n", pf.token());
buffer[pf.line()] = pf.token();
}
return;
}
break;
// other stages propagate the previous result to this pipe and
// increment it by one
default: {
printf(
"stage %zu: input buffer[%zu] = %d\n", pf.pipe(), pf.line(), buffer[pf.line()]
);
buffer[pf.line()] = buffer[pf.line()] + 1;
}
break;
}
};
// create a vector of three pipes
std::vector< tf::Pipe<std::function<void(tf::Pipeflow&)>> > pipes;
for(size_t i=0; i<3; i++) {
pipes.emplace_back(tf::PipeType::SERIAL, pipe_callable);
}
// create a pipeline of four parallel lines based on the given vector of pipes
tf::ScalablePipeline pl(num_lines, pipes.begin(), pipes.end());
// build the pipeline graph using composition
tf::Task init = taskflow.emplace([](){ std::cout << "ready\n"; })
.name("starting pipeline");
tf::Task task = taskflow.composed_of(pl)
.name("pipeline");
tf::Task stop = taskflow.emplace([](){ std::cout << "stopped\n"; })
.name("pipeline stopped");
// create task dependency
init.precede(task);
task.precede(stop);
// dump the pipeline graph structure (with composition)
taskflow.dump(std::cout);
// run the pipeline
executor.run(taskflow).wait();
// reset the pipeline to a new range of five pipes and starts from
// the initial state (i.e., token counts from zero)
for(size_t i=0; i<2; i++) {
pipes.emplace_back(tf::PipeType::SERIAL, pipe_callable);
}
pl.reset(pipes.begin(), pipes.end());
executor.run(taskflow).wait();
@endcode
The program defines a uniform pipe type of `%tf::Pipe<%std::function<void(%tf::Pipeflow&)>>`
and keep all pipes in a vector that is amenable to change.
Then, it constructs a scalable pipeline using two range iterators, <tt>[first, last)</tt>,
that point to the beginning and the end of the pipe vector,
resulting in a pipeline of three serial stages:
@dotfile images/scalable_pipeline_1.dot
Then, the program appends another two pipes into the vector and resets the pipeline
to the new range of two additional pipes, resulting in a pipeline of five serial stages:
@dotfile images/scalable_pipeline_2.dot
When resetting a scalable pipeline to a new range, it will start from the initial state
as if it has just been constructed, i.e., the token number counts from zero.
@attention
Unlike tf::Pipeline that keeps the given pipes in a std::tuple object,
tf::ScalablePipeline does not own the given pipe but maintains a vector of iterators
to each pipe in the given range.
It is your responsibility to keep those pipe objects alive during the execution
of the pipeline task.
@section ResetAPlaceholderScalablePipeline Reset a Placeholder Scalable Pipeline
It is possible to create a scalable pipeline as a placeholder
using the constructor tf::ScalablePipeline(size_t num_lines) and reset
it to another range later in the application.
The following code creates a task to emplace
a range of pipes and reset the pipeline
to that range, before running the pipeline task:
@code{.cpp}
tf::Executor executor;
tf::Taskflow taskflow;
size_t num_pipes = 10;
size_t num_lines = 10;
std::vector<tf::Pipe<std::function<void(tf::Pipeflow&)>>> pipes;
tf::ScalablePipeline<typename decltype(pipes)::iterator> spl(num_lines);
tf::Task init = taskflow.emplace([&](){
for(size_t i=0; i<num_pipes; i++) {
pipes.emplace_back(tf::PipeType::SERIAL, [&](tf::Pipeflow& pf) {
if(pf.pipe() == 0 && pf.token() == 1024) {
pf.stop();
return;
}
});
}
spl.reset(pipes.begin(), pipes.end());
}).name("init");
tf::Task pipeline = taskflow.composed_of(spl).name("pipeline");
pipeline.succeed(init);
executor.run(taskflow).wait();
@endcode
The task graph of this program is shown below:
@dotfile images/scalable_pipeline_3.dot
@attention
It is your responsibility to ensure a scalable pipeline has
a valid structure before running it.
A valid pipeline must have at least one parallel line and one pipe,
where the first pipe is a serial type.
Similarly, you can create an empty scalable pipeline using the default
constructor tf::ScalablePipeline() and reset it later in your program.
@code{.cpp}
std::vector<tf::Pipe<std::function<void(tf::Pipeflow&)>>> pipes;
tf::ScalablePipeline<typename decltype(pipes)::iterator> spl;
// create pipes ...
spl.reset(num_lines, pipes.begin(), pipes.end());
@endcode
@section ScalablePipelineUseOtherIteratorTypes Use Other Iterator Types
When assigning a range to a scalable pipeline,
the pipeline fetches all pipe iterators in that range to an internal vector.
This organization allows invoking a pipe callable to be a
random accessible operation, regardless of the pipe container type.
%Taskflow does not have much restriction on the iterator type, as long as
these pipes can be iterated in a sequential order
using the postfix increment operator, `++`.
@code{.cpp}
// use vector to store pipes
std::vector<tf::Pipe<std::function<void(tf::Pipeflow&)>>> vector;
tf::ScalablePipeline spl1(num_lines, vector.begin(), vector.end());
// use list to store pipes
std::list<tf::Pipe<std::function<void(tf::Pipeflow&)>>> list;
tf::ScalablePipeline spl2(num_lines, list.begin(), list.end());
@endcode
@section ParallelScalablePipelineLearnMore Learn More about Taskflow Pipeline
Visit the following pages to learn more about pipeline:
+ @ref TaskParallelPipeline
+ @ref DataParallelPipeline
+ @ref TextProcessingPipeline
+ @ref GraphProcessingPipeline
+ @ref TaskflowProcessingPipeline
*/
}