146 lines
19 KiB
HTML
146 lines
19 KiB
HTML
|
<!DOCTYPE html>
|
||
|
<html lang="en">
|
||
|
<head>
|
||
|
<meta charset="UTF-8" />
|
||
|
<title>Taskflow Algorithms » Partitioning Algorithm | Taskflow QuickStart</title>
|
||
|
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Source+Sans+Pro:400,400i,600,600i%7CSource+Code+Pro:400,400i,600" />
|
||
|
<link rel="stylesheet" href="m-dark+documentation.compiled.css" />
|
||
|
<link rel="icon" href="favicon.ico" type="image/vnd.microsoft.icon" />
|
||
|
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
||
|
<meta name="theme-color" content="#22272e" />
|
||
|
</head>
|
||
|
<body>
|
||
|
<header><nav id="navigation">
|
||
|
<div class="m-container">
|
||
|
<div class="m-row">
|
||
|
<span id="m-navbar-brand" class="m-col-t-8 m-col-m-none m-left-m">
|
||
|
<a href="https://taskflow.github.io"><img src="taskflow_logo.png" alt="" />Taskflow</a> <span class="m-breadcrumb">|</span> <a href="index.html" class="m-thin">QuickStart</a>
|
||
|
</span>
|
||
|
<div class="m-col-t-4 m-hide-m m-text-right m-nopadr">
|
||
|
<a href="#search" class="m-doc-search-icon" title="Search" onclick="return showSearch()"><svg style="height: 0.9rem;" viewBox="0 0 16 16">
|
||
|
<path id="m-doc-search-icon-path" d="m6 0c-3.31 0-6 2.69-6 6 0 3.31 2.69 6 6 6 1.49 0 2.85-0.541 3.89-1.44-0.0164 0.338 0.147 0.759 0.5 1.15l3.22 3.79c0.552 0.614 1.45 0.665 2 0.115 0.55-0.55 0.499-1.45-0.115-2l-3.79-3.22c-0.392-0.353-0.812-0.515-1.15-0.5 0.895-1.05 1.44-2.41 1.44-3.89 0-3.31-2.69-6-6-6zm0 1.56a4.44 4.44 0 0 1 4.44 4.44 4.44 4.44 0 0 1-4.44 4.44 4.44 4.44 0 0 1-4.44-4.44 4.44 4.44 0 0 1 4.44-4.44z"/>
|
||
|
</svg></a>
|
||
|
<a id="m-navbar-show" href="#navigation" title="Show navigation"></a>
|
||
|
<a id="m-navbar-hide" href="#" title="Hide navigation"></a>
|
||
|
</div>
|
||
|
<div id="m-navbar-collapse" class="m-col-t-12 m-show-m m-col-m-none m-right-m">
|
||
|
<div class="m-row">
|
||
|
<ol class="m-col-t-6 m-col-m-none">
|
||
|
<li><a href="pages.html">Handbook</a></li>
|
||
|
<li><a href="namespaces.html">Namespaces</a></li>
|
||
|
</ol>
|
||
|
<ol class="m-col-t-6 m-col-m-none" start="3">
|
||
|
<li><a href="annotated.html">Classes</a></li>
|
||
|
<li><a href="files.html">Files</a></li>
|
||
|
<li class="m-show-m"><a href="#search" class="m-doc-search-icon" title="Search" onclick="return showSearch()"><svg style="height: 0.9rem;" viewBox="0 0 16 16">
|
||
|
<use href="#m-doc-search-icon-path" />
|
||
|
</svg></a></li>
|
||
|
</ol>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</nav></header>
|
||
|
<main><article>
|
||
|
<div class="m-container m-container-inflatable">
|
||
|
<div class="m-row">
|
||
|
<div class="m-col-l-10 m-push-l-1">
|
||
|
<h1>
|
||
|
<span class="m-breadcrumb"><a href="Algorithms.html">Taskflow Algorithms</a> »</span>
|
||
|
Partitioning Algorithm
|
||
|
</h1>
|
||
|
<nav class="m-block m-default">
|
||
|
<h3>Contents</h3>
|
||
|
<ul>
|
||
|
<li><a href="#DefineAPartitionerForParallelAlgorithms">Define a Partitioner for Parallel Algorithms</a></li>
|
||
|
<li><a href="#DefineAStaticPartitioner">Define a Static Partitioner</a></li>
|
||
|
<li><a href="#DefineADynamicPartitioner">Define a Dynamic Partitioner</a></li>
|
||
|
<li><a href="#DefineAGuidedPartitioner">Define a Guided Partitioner</a></li>
|
||
|
<li><a href="#DefineAClosureWrapperForAPartitioner">Define a Closure Wrapper for a Partitioner</a></li>
|
||
|
</ul>
|
||
|
</nav>
|
||
|
<p>A partitioning algorithm allows applications to optimize parallel algorithms using different scheduling methods, such as static partitioning, dynamic partitioning, and guided partitioning.</p><section id="DefineAPartitionerForParallelAlgorithms"><h2><a href="#DefineAPartitionerForParallelAlgorithms">Define a Partitioner for Parallel Algorithms</a></h2><p>A partitioner defines how to partition and distribute iterations to different workers when running parallel algorithms in Taskflow, such as <a href="classtf_1_1FlowBuilder.html#aae3edfa278baa75b08414e083c14c836" class="m-doc">tf::<wbr />Taskflow::<wbr />for_each</a> and <a href="classtf_1_1FlowBuilder.html#a97be7ceef6fa4276e3b074c10c13b826" class="m-doc">tf::<wbr />Taskflow::<wbr />transform</a>. The following example shows how to create parallel-iteration tasks with different execution policies:</p><pre class="m-code"><span class="n">std</span><span class="o">::</span><span class="n">vector</span><span class="o"><</span><span class="kt">int</span><span class="o">></span><span class="w"> </span><span class="n">data</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">{</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="p">,</span><span class="w"> </span><span class="mi">3</span><span class="p">,</span><span class="w"> </span><span class="mi">4</span><span class="p">,</span><span class="w"> </span><span class="mi">5</span><span class="p">,</span><span class="w"> </span><span class="mi">6</span><span class="p">,</span><span class="w"> </span><span class="mi">7</span><span class="p">,</span><span class="w"> </span><span class="mi">8</span><span class="p">,</span><span class="w"> </span><span class="mi">9</span><span class="p">,</span><span class="w"> </span><span class="mi">10</span><span class="p">}</span>
|
||
|
|
||
|
<span class="c1">// create different partitioners</span>
|
||
|
<span class="n">tf</span><span class="o">::</span><span class="n">GuidedPartitioner</span><span class="w"> </span><span class="n">guided_partitioner</span><span class="p">;</span>
|
||
|
<span class="n">tf</span><span class="o">::</span><span class="n">StaticPartitioner</span><span class="w"> </span><span class="n">static_partitioner</span><span class="p">;</span>
|
||
|
<span class="n">tf</span><span class="o">::</span><span class="n">RandomPartitioner</span><span class="w"> </span><span class="n">random_partitioner</span><span class="p">;</span>
|
||
|
<span class="n">tf</span><span class="o">::</span><span class="n">DynamicPartitioner</span><span class="w"> </span><span class="n">dynamic_partitioner</span><span class="p">;</span>
|
||
|
|
||
|
<span class="c1">// create four parallel-iteration tasks from the four execution policies</span>
|
||
|
<span class="n">taskflow</span><span class="p">.</span><span class="n">for_each</span><span class="p">(</span><span class="n">data</span><span class="p">.</span><span class="n">begin</span><span class="p">(),</span><span class="w"> </span><span class="n">data</span><span class="p">.</span><span class="n">end</span><span class="p">(),</span><span class="w"> </span><span class="p">[](</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">){},</span><span class="w"> </span><span class="n">guided_partitioner</span><span class="p">);</span>
|
||
|
<span class="n">taskflow</span><span class="p">.</span><span class="n">for_each</span><span class="p">(</span><span class="n">data</span><span class="p">.</span><span class="n">begin</span><span class="p">(),</span><span class="w"> </span><span class="n">data</span><span class="p">.</span><span class="n">end</span><span class="p">(),</span><span class="w"> </span><span class="p">[](</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">){},</span><span class="w"> </span><span class="n">static_partitioner</span><span class="p">);</span>
|
||
|
<span class="n">taskflow</span><span class="p">.</span><span class="n">for_each</span><span class="p">(</span><span class="n">data</span><span class="p">.</span><span class="n">begin</span><span class="p">(),</span><span class="w"> </span><span class="n">data</span><span class="p">.</span><span class="n">end</span><span class="p">(),</span><span class="w"> </span><span class="p">[](</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">){},</span><span class="w"> </span><span class="n">random_partitioner</span><span class="p">);</span>
|
||
|
<span class="n">taskflow</span><span class="p">.</span><span class="n">for_each</span><span class="p">(</span><span class="n">data</span><span class="p">.</span><span class="n">begin</span><span class="p">(),</span><span class="w"> </span><span class="n">data</span><span class="p">.</span><span class="n">end</span><span class="p">(),</span><span class="w"> </span><span class="p">[](</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">){},</span><span class="w"> </span><span class="n">dynamic_partitioner</span><span class="p">);</span></pre><p>Each partitioner has a specific algorithm to partition iterations into a set of <em>chunks</em> and distribute chunks to workers. A chunk is the basic unit of work that will be run by a worker during the execution of parallel iterations. The following figure illustrates the scheduling diagram for three major partitioners, <a href="classtf_1_1StaticPartitioner.html" class="m-doc">tf::<wbr />StaticPartitioner</a>, <a href="classtf_1_1DynamicPartitioner.html" class="m-doc">tf::<wbr />DynamicPartitioner</a>, and <a href="classtf_1_1GuidedPartitioner.html" class="m-doc">tf::<wbr />GuidedPartitioner</a>:</p><img class="m-image" src="parallel_for_partition_algorithms.png" alt="Image" /><p>Depending on applications, partitioning algorithms can impact the performance a lot. For example, if a parallel-iteration workload contains a regular work unit per iteration, <a href="classtf_1_1StaticPartitioner.html" class="m-doc">tf::<wbr />StaticPartitioner</a> may deliver the best performance. On the other hand, if the work unit per iteration is irregular and unbalanced, <a href="classtf_1_1GuidedPartitioner.html" class="m-doc">tf::<wbr />GuidedPartitioner</a> or <a href="classtf_1_1DynamicPartitioner.html" class="m-doc">tf::<wbr />DynamicPartitioner</a> can outperform <a href="classtf_1_1StaticPartitioner.html" class="m-doc">tf::<wbr />StaticPartitioner</a>.</p><aside class="m-note m-info"><h4>Note</h4><p>By default, all parallel algorithms in Taskflow use <a href="namespacetf.html#a66b72776c788898aee9e132b0ea9b405" class="m-doc">tf::<wbr />DefaultPartitioner</a>, which is based on guided scheduling via <a href="classtf_1_1GuidedPartitioner.html" class="m-doc">tf::<wbr />GuidedPartitioner</a>.</p></aside></section><section id="DefineAStaticPartitioner"><h2><a href="#DefineAStaticPartitioner">Define a Static Partitioner</a></h2><p>Static partitioner splits iterations into <code>iter_size/chunk_size</code> chunks and distribute chunks to workers in order. If no chunk size is given (<code>chunk_size</code> is 0), Taskflow will partition iterations into chunks that are approximately equal in size. The following code creates a static partitioner with chunk size equal to 100:</p><pre class="m-code"><span class="n">tf</span><span class="o">::</span><span class="n">StaticPartitioner</span><span class="w"> </span><span class="nf">static_partitioner</span><span class="p">(</span><span class="mi">100</span><span class="p">);</span></pre></section><section id="DefineADynamicPartitioner"><h2><a href="#DefineADynamicPartitioner">Define a Dynamic Partitioner</a></h2><p>Dynamic partitioner splits iterations into <code>iter_size/chunk_size</code> chunks and distribute chunks to workers without any specific order. If no chunk size is given (<code>chunk_size</code> is 0), Taskflow will use 1 for the minimum size of a partition. The following code creates a dynamic partitioner with chunk size equal to 2:</p><pre class="m-code"><span class="n">tf</span><span class="o">::</span><span class="n">DynamicPartitioner</span><span class="w"> </span><span class="nf">dynamic_partitioner</span><span class="p">(</span><span class="mi">2</span><span class="p">);</span></pre></section><section id="DefineAGuidedPartitioner"><h2><a href="#DefineAGuidedPartitioner">Define a Guided Partitioner</a></h2><p>Guided partitioner dynamically decides the chunk size. The size of a chunk is proportional to the number of unassigned iterations divided by the number of the threads, and the size will gradu
|
||
|
<span class="n">tf</span><span class="o">::</span><span class="n">Taskflow</span><span class="w"> </span><span class="n">taskflow</span><span class="p">;</span>
|
||
|
<span class="n">taskflow</span><span class="p">.</span><span class="n">for_each_index</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">100</span><span class="p">,</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span>
|
||
|
<span class="w"> </span><span class="p">[](){</span><span class="w"> </span>
|
||
|
<span class="w"> </span><span class="n">printf</span><span class="p">(</span><span class="s">"%d</span><span class="se">\n</span><span class="s">"</span><span class="p">,</span><span class="w"> </span><span class="n">i</span><span class="p">);</span><span class="w"> </span>
|
||
|
<span class="w"> </span><span class="p">},</span>
|
||
|
<span class="w"> </span><span class="n">tf</span><span class="o">::</span><span class="n">StaticPartitioner</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="p">[](</span><span class="k">auto</span><span class="o">&&</span><span class="w"> </span><span class="n">closure</span><span class="p">){</span>
|
||
|
<span class="w"> </span><span class="c1">// do something before invoking the partitioned task</span>
|
||
|
<span class="w"> </span><span class="c1">// ...</span>
|
||
|
<span class="w"> </span>
|
||
|
<span class="w"> </span><span class="c1">// invoke the partitioned task</span>
|
||
|
<span class="w"> </span><span class="n">closure</span><span class="p">();</span>
|
||
|
|
||
|
<span class="w"> </span><span class="c1">// do something else after invoking the partitioned task</span>
|
||
|
<span class="w"> </span><span class="c1">// ...</span>
|
||
|
<span class="w"> </span><span class="p">}</span>
|
||
|
<span class="p">);</span>
|
||
|
<span class="n">executor</span><span class="p">.</span><span class="n">run</span><span class="p">(</span><span class="n">taskflow</span><span class="p">).</span><span class="n">wait</span><span class="p">();</span></pre><p>Each partitioner uses a default closure wrapper (<a href="structtf_1_1DefaultClosureWrapper.html" class="m-doc">tf::<wbr />DefaultClosureWrapper</a>) that does nothing but simply invokes the given closure to perform the ordinary partitioned task.</p><pre class="m-code"><span class="k">struct</span><span class="w"> </span><span class="nc">DefaultClosureWrapper</span><span class="w"> </span><span class="p">{</span>
|
||
|
<span class="w"> </span><span class="k">template</span><span class="w"> </span><span class="o"><</span><span class="k">typename</span><span class="w"> </span><span class="nc">C</span><span class="o">></span>
|
||
|
<span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="k">operator</span><span class="p">()(</span><span class="n">C</span><span class="o">&&</span><span class="w"> </span><span class="n">closure</span><span class="p">)</span><span class="w"> </span><span class="k">const</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="n">std</span><span class="o">::</span><span class="n">forward</span><span class="o"><</span><span class="n">C</span><span class="o">></span><span class="p">(</span><span class="n">closure</span><span class="p">)();</span><span class="w"> </span><span class="p">}</span>
|
||
|
<span class="p">};</span></pre></section>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</article></main>
|
||
|
<div class="m-doc-search" id="search">
|
||
|
<a href="#!" onclick="return hideSearch()"></a>
|
||
|
<div class="m-container">
|
||
|
<div class="m-row">
|
||
|
<div class="m-col-m-8 m-push-m-2">
|
||
|
<div class="m-doc-search-header m-text m-small">
|
||
|
<div><span class="m-label m-default">Tab</span> / <span class="m-label m-default">T</span> to search, <span class="m-label m-default">Esc</span> to close</div>
|
||
|
<div id="search-symbolcount">…</div>
|
||
|
</div>
|
||
|
<div class="m-doc-search-content">
|
||
|
<form>
|
||
|
<input type="search" name="q" id="search-input" placeholder="Loading …" disabled="disabled" autofocus="autofocus" autocomplete="off" spellcheck="false" />
|
||
|
</form>
|
||
|
<noscript class="m-text m-danger m-text-center">Unlike everything else in the docs, the search functionality <em>requires</em> JavaScript.</noscript>
|
||
|
<div id="search-help" class="m-text m-dim m-text-center">
|
||
|
<p class="m-noindent">Search for symbols, directories, files, pages or
|
||
|
modules. You can omit any prefix from the symbol or file path; adding a
|
||
|
<code>:</code> or <code>/</code> suffix lists all members of given symbol or
|
||
|
directory.</p>
|
||
|
<p class="m-noindent">Use <span class="m-label m-dim">↓</span>
|
||
|
/ <span class="m-label m-dim">↑</span> to navigate through the list,
|
||
|
<span class="m-label m-dim">Enter</span> to go.
|
||
|
<span class="m-label m-dim">Tab</span> autocompletes common prefix, you can
|
||
|
copy a link to the result using <span class="m-label m-dim">⌘</span>
|
||
|
<span class="m-label m-dim">L</span> while <span class="m-label m-dim">⌘</span>
|
||
|
<span class="m-label m-dim">M</span> produces a Markdown link.</p>
|
||
|
</div>
|
||
|
<div id="search-notfound" class="m-text m-warning m-text-center">Sorry, nothing was found.</div>
|
||
|
<ul id="search-results"></ul>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
<script src="search-v2.js"></script>
|
||
|
<script src="searchdata-v2.js" async="async"></script>
|
||
|
<footer><nav>
|
||
|
<div class="m-container">
|
||
|
<div class="m-row">
|
||
|
<div class="m-col-l-10 m-push-l-1">
|
||
|
<p>Taskflow handbook is part of the <a href="https://taskflow.github.io">Taskflow project</a>, copyright © <a href="https://tsung-wei-huang.github.io/">Dr. Tsung-Wei Huang</a>, 2018–2024.<br />Generated by <a href="https://doxygen.org/">Doxygen</a> 1.9.1 and <a href="https://mcss.mosra.cz/">m.css</a>.</p>
|
||
|
</div>
|
||
|
</div>
|
||
|
</div>
|
||
|
</nav></footer>
|
||
|
</body>
|
||
|
</html>
|