mesytec-mnode/external/taskflow-3.8.0/docs/CUDASTDMerge.html

195 lines
25 KiB
HTML
Raw Normal View History

2025-01-04 01:25:05 +01:00
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<title>CUDA Standard Algorithms &raquo; Parallel Merge | Taskflow QuickStart</title>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Source+Sans+Pro:400,400i,600,600i%7CSource+Code+Pro:400,400i,600" />
<link rel="stylesheet" href="m-dark+documentation.compiled.css" />
<link rel="icon" href="favicon.ico" type="image/vnd.microsoft.icon" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta name="theme-color" content="#22272e" />
</head>
<body>
<header><nav id="navigation">
<div class="m-container">
<div class="m-row">
<span id="m-navbar-brand" class="m-col-t-8 m-col-m-none m-left-m">
<a href="https://taskflow.github.io"><img src="taskflow_logo.png" alt="" />Taskflow</a> <span class="m-breadcrumb">|</span> <a href="index.html" class="m-thin">QuickStart</a>
</span>
<div class="m-col-t-4 m-hide-m m-text-right m-nopadr">
<a href="#search" class="m-doc-search-icon" title="Search" onclick="return showSearch()"><svg style="height: 0.9rem;" viewBox="0 0 16 16">
<path id="m-doc-search-icon-path" d="m6 0c-3.31 0-6 2.69-6 6 0 3.31 2.69 6 6 6 1.49 0 2.85-0.541 3.89-1.44-0.0164 0.338 0.147 0.759 0.5 1.15l3.22 3.79c0.552 0.614 1.45 0.665 2 0.115 0.55-0.55 0.499-1.45-0.115-2l-3.79-3.22c-0.392-0.353-0.812-0.515-1.15-0.5 0.895-1.05 1.44-2.41 1.44-3.89 0-3.31-2.69-6-6-6zm0 1.56a4.44 4.44 0 0 1 4.44 4.44 4.44 4.44 0 0 1-4.44 4.44 4.44 4.44 0 0 1-4.44-4.44 4.44 4.44 0 0 1 4.44-4.44z"/>
</svg></a>
<a id="m-navbar-show" href="#navigation" title="Show navigation"></a>
<a id="m-navbar-hide" href="#" title="Hide navigation"></a>
</div>
<div id="m-navbar-collapse" class="m-col-t-12 m-show-m m-col-m-none m-right-m">
<div class="m-row">
<ol class="m-col-t-6 m-col-m-none">
<li><a href="pages.html">Handbook</a></li>
<li><a href="namespaces.html">Namespaces</a></li>
</ol>
<ol class="m-col-t-6 m-col-m-none" start="3">
<li><a href="annotated.html">Classes</a></li>
<li><a href="files.html">Files</a></li>
<li class="m-show-m"><a href="#search" class="m-doc-search-icon" title="Search" onclick="return showSearch()"><svg style="height: 0.9rem;" viewBox="0 0 16 16">
<use href="#m-doc-search-icon-path" />
</svg></a></li>
</ol>
</div>
</div>
</div>
</div>
</nav></header>
<main><article>
<div class="m-container m-container-inflatable">
<div class="m-row">
<div class="m-col-l-10 m-push-l-1">
<h1>
<span class="m-breadcrumb"><a href="cudaStandardAlgorithms.html">CUDA Standard Algorithms</a> &raquo;</span>
Parallel Merge
</h1>
<nav class="m-block m-default">
<h3>Contents</h3>
<ul>
<li><a href="#CUDASTDMergeIncludeTheHeader">Include the Header</a></li>
<li><a href="#CUDASTDMergeItems">Merge Two Sorted Ranges of Items</a></li>
<li><a href="#CUDASTDMergeKeyValueItems">Merge Two Sorted Ranges of Key-Value Items</a></li>
</ul>
</nav>
<p>Taskflow provides standalone template methods for merging two sorted ranges of items into a sorted range of items.</p><section id="CUDASTDMergeIncludeTheHeader"><h2><a href="#CUDASTDMergeIncludeTheHeader">Include the Header</a></h2><p>You need to include the header file, <code>taskflow/cuda/algorithm/merge.hpp</code>, for using the parallel-merge algorithm.</p><pre class="m-code"><span class="cp">#include</span><span class="w"> </span><span class="cpf">&lt;taskflow/cuda/algorithm/merge.hpp&gt;</span></pre></section><section id="CUDASTDMergeItems"><h2><a href="#CUDASTDMergeItems">Merge Two Sorted Ranges of Items</a></h2><p><a href="namespacetf.html#a37ec481149c2f01669353033d75ed72a" class="m-doc">tf::<wbr />cuda_merge</a> merges two sorted ranges of items into a sorted range. The following code merges two sorted arrays <code>input_1</code> and <code>input_2</code>, each of 1000 items, into a sorted array <code>output</code> of 2000 items.</p><pre class="m-code"><span class="k">const</span><span class="w"> </span><span class="kt">size_t</span><span class="w"> </span><span class="n">N</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1000</span><span class="p">;</span>
<span class="kt">int</span><span class="o">*</span><span class="w"> </span><span class="n">input_1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tf</span><span class="o">::</span><span class="n">cuda_malloc_shared</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="p">(</span><span class="n">N</span><span class="p">);</span><span class="w"> </span><span class="c1">// input vector 1</span>
<span class="kt">int</span><span class="o">*</span><span class="w"> </span><span class="n">input_2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tf</span><span class="o">::</span><span class="n">cuda_malloc_shared</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="p">(</span><span class="n">N</span><span class="p">);</span><span class="w"> </span><span class="c1">// input vector 2</span>
<span class="kt">int</span><span class="o">*</span><span class="w"> </span><span class="n">output</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tf</span><span class="o">::</span><span class="n">cuda_malloc_shared</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">N</span><span class="p">);</span><span class="w"> </span><span class="c1">// output vector</span>
<span class="c1">// initializes the data</span>
<span class="k">for</span><span class="p">(</span><span class="kt">size_t</span><span class="w"> </span><span class="n">i</span><span class="o">=</span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">&lt;</span><span class="n">N</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<span class="w"> </span><span class="n">input_1</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">rand</span><span class="p">()</span><span class="o">%</span><span class="mi">100</span><span class="p">;</span>
<span class="w"> </span><span class="n">input_2</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">rand</span><span class="p">()</span><span class="o">%</span><span class="mi">100</span><span class="p">;</span>
<span class="p">}</span>
<span class="n">std</span><span class="o">::</span><span class="n">sort</span><span class="p">(</span><span class="n">input_1</span><span class="p">,</span><span class="w"> </span><span class="n">input1</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">N</span><span class="p">);</span>
<span class="n">std</span><span class="o">::</span><span class="n">sort</span><span class="p">(</span><span class="n">input_2</span><span class="p">,</span><span class="w"> </span><span class="n">input2</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">N</span><span class="p">);</span>
<span class="c1">// create an execution policy</span>
<span class="n">tf</span><span class="o">::</span><span class="n">cudaStream</span><span class="w"> </span><span class="n">stream</span><span class="p">;</span>
<span class="n">tf</span><span class="o">::</span><span class="n">cudaDefaultExecutionPolicy</span><span class="w"> </span><span class="nf">policy</span><span class="p">(</span><span class="n">stream</span><span class="p">);</span>
<span class="c1">// queries the required buffer size to merge two N-element sorted vectors</span>
<span class="k">auto</span><span class="w"> </span><span class="n">bytes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">policy</span><span class="p">.</span><span class="n">merge_bufsz</span><span class="p">(</span><span class="n">N</span><span class="p">,</span><span class="w"> </span><span class="n">N</span><span class="p">);</span>
<span class="k">auto</span><span class="w"> </span><span class="n">buffer</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tf</span><span class="o">::</span><span class="n">cuda_malloc_device</span><span class="o">&lt;</span><span class="n">std</span><span class="o">::</span><span class="n">byte</span><span class="o">&gt;</span><span class="p">(</span><span class="n">bytes</span><span class="p">);</span>
<span class="c1">// merge input_1 and input_2 to output</span>
<span class="n">tf</span><span class="o">::</span><span class="n">cuda_merge</span><span class="p">(</span><span class="n">policy</span><span class="p">,</span><span class="w"> </span>
<span class="w"> </span><span class="n">input_1</span><span class="p">,</span><span class="w"> </span><span class="n">input_1</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">N</span><span class="p">,</span><span class="w"> </span><span class="n">input_2</span><span class="p">,</span><span class="w"> </span><span class="n">input_2</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">N</span><span class="p">,</span><span class="w"> </span><span class="n">output</span><span class="p">,</span><span class="w"> </span>
<span class="w"> </span><span class="p">[]</span><span class="n">__device__</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">b</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">b</span><span class="p">;</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="c1">// comparator</span>
<span class="w"> </span><span class="n">buffer</span>
<span class="p">);</span>
<span class="c1">// synchronizes the execution and verifies the result</span>
<span class="n">stream</span><span class="p">.</span><span class="n">synchronize</span><span class="p">();</span>
<span class="c1">// verify the result</span>
<span class="n">assert</span><span class="p">(</span><span class="n">std</span><span class="o">::</span><span class="n">is_sorted</span><span class="p">(</span><span class="n">output</span><span class="p">,</span><span class="w"> </span><span class="n">output</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">2</span><span class="o">*</span><span class="n">N</span><span class="p">));</span>
<span class="c1">// delete the buffer</span>
<span class="n">cudaFree</span><span class="p">(</span><span class="n">input1</span><span class="p">);</span>
<span class="n">cudaFree</span><span class="p">(</span><span class="n">input2</span><span class="p">);</span>
<span class="n">cudaFree</span><span class="p">(</span><span class="n">output</span><span class="p">);</span>
<span class="n">cudaFree</span><span class="p">(</span><span class="n">buffer</span><span class="p">);</span></pre><p>The merge algorithm runs <em>asynchronously</em> through the stream specified in the execution policy. You need to synchronize the stream to obtain correct results. Since the GPU merge algorithm may require extra buffer to store the temporary results, you need to provide a buffer of size at least larger or equal to the value returned from <code><a href="classtf_1_1cudaExecutionPolicy.html#a1febbe549d9cbe4502a5b66167ab9553" class="m-doc">tf::<wbr />cudaDefaultExecutionPolicy::<wbr />merge_bufsz</a></code>. The buffer size depends only on the two input vector sizes.</p><aside class="m-note m-warning"><h4>Attention</h4><p>You must keep the buffer alive before the merge call completes.</p></aside></section><section id="CUDASTDMergeKeyValueItems"><h2><a href="#CUDASTDMergeKeyValueItems">Merge Two Sorted Ranges of Key-Value Items</a></h2><p><a href="namespacetf.html#aa84d4c68d2cbe9f6efc4a1eb1a115458" class="m-doc">tf::<wbr />cuda_merge_by_key</a> performs key-value merge over two sorted ranges in a similar way to <a href="namespacetf.html#a37ec481149c2f01669353033d75ed72a" class="m-doc">tf::<wbr />cuda_merge</a>; additionally, it copies elements from the two ranges of values associated with the two input keys, respectively. The following code performs key-value merge over <code>a</code> and <code>b:</code></p><pre class="m-code"><span class="k">const</span><span class="w"> </span><span class="kt">size_t</span><span class="w"> </span><span class="n">N</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<span class="kt">int</span><span class="o">*</span><span class="w"> </span><span class="n">a_keys</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tf</span><span class="o">::</span><span class="n">cuda_malloc_shared</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="p">(</span><span class="n">N</span><span class="p">);</span>
<span class="kt">int</span><span class="o">*</span><span class="w"> </span><span class="n">a_vals</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tf</span><span class="o">::</span><span class="n">cuda_malloc_shared</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="p">(</span><span class="n">N</span><span class="p">);</span>
<span class="kt">int</span><span class="o">*</span><span class="w"> </span><span class="n">b_keys</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tf</span><span class="o">::</span><span class="n">cuda_malloc_shared</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="p">(</span><span class="n">N</span><span class="p">);</span>
<span class="kt">int</span><span class="o">*</span><span class="w"> </span><span class="n">b_vals</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tf</span><span class="o">::</span><span class="n">cuda_malloc_shared</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="p">(</span><span class="n">N</span><span class="p">);</span>
<span class="kt">int</span><span class="o">*</span><span class="w"> </span><span class="n">c_keys</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tf</span><span class="o">::</span><span class="n">cuda_malloc_shared</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">N</span><span class="p">);</span>
<span class="kt">int</span><span class="o">*</span><span class="w"> </span><span class="n">c_vals</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tf</span><span class="o">::</span><span class="n">cuda_malloc_shared</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="p">(</span><span class="mi">2</span><span class="o">*</span><span class="n">N</span><span class="p">);</span>
<span class="c1">// initializes the data</span>
<span class="n">a_keys</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">8</span><span class="p">,</span><span class="w"> </span><span class="n">a_keys</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span>
<span class="n">a_vals</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="n">a_vals</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span>
<span class="n">b_keys</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">3</span><span class="p">,</span><span class="w"> </span><span class="n">b_keys</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">7</span><span class="p">;</span>
<span class="n">b_vals</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">3</span><span class="p">,</span><span class="w"> </span><span class="n">b_vals</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">4</span><span class="p">;</span>
<span class="c1">// create an execution policy</span>
<span class="n">tf</span><span class="o">::</span><span class="n">cudaStream</span><span class="w"> </span><span class="n">stream</span><span class="p">;</span>
<span class="n">tf</span><span class="o">::</span><span class="n">cudaDefaultExecutionPolicy</span><span class="w"> </span><span class="nf">policy</span><span class="p">(</span><span class="n">stream</span><span class="p">);</span>
<span class="c1">// queries the required buffer size to merge two N-element sorted vectors by keys</span>
<span class="k">auto</span><span class="w"> </span><span class="n">bytes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">policy</span><span class="p">.</span><span class="n">merge_bufsz</span><span class="p">(</span><span class="n">N</span><span class="p">,</span><span class="w"> </span><span class="n">N</span><span class="p">);</span>
<span class="k">auto</span><span class="w"> </span><span class="n">buffer</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tf</span><span class="o">::</span><span class="n">cuda_malloc_device</span><span class="o">&lt;</span><span class="n">std</span><span class="o">::</span><span class="n">byte</span><span class="o">&gt;</span><span class="p">(</span><span class="n">bytes</span><span class="p">);</span>
<span class="c1">// merge keys and values of a and b to c</span>
<span class="n">tf</span><span class="o">::</span><span class="n">cuda_merge_by_key</span><span class="p">(</span>
<span class="w"> </span><span class="n">policy</span><span class="p">,</span><span class="w"> </span>
<span class="w"> </span><span class="n">a_keys</span><span class="p">,</span><span class="w"> </span><span class="n">a_keys</span><span class="o">+</span><span class="n">N</span><span class="p">,</span><span class="w"> </span><span class="n">a_vals</span><span class="p">,</span>
<span class="w"> </span><span class="n">b_keys</span><span class="p">,</span><span class="w"> </span><span class="n">b_keys</span><span class="o">+</span><span class="n">N</span><span class="p">,</span><span class="w"> </span><span class="n">b_vals</span><span class="p">,</span>
<span class="w"> </span><span class="n">c_keys</span><span class="p">,</span><span class="w"> </span><span class="n">c_vals</span><span class="p">,</span>
<span class="w"> </span><span class="p">[]</span><span class="n">__device__</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="p">,</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">b</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">b</span><span class="p">;</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="c1">// comparator</span>
<span class="w"> </span><span class="n">buffer</span>
<span class="p">);</span>
<span class="c1">// wait for the merge to complete</span>
<span class="n">stream</span><span class="p">.</span><span class="n">synchronize</span><span class="p">();</span>
<span class="c1">// now, c_keys = {1, 3, 7, 8}</span>
<span class="c1">// now, c_vals = {2, 3, 4, 1}</span>
<span class="c1">// delete the device memory</span>
<span class="n">cudaFree</span><span class="p">(</span><span class="n">buffer</span><span class="p">);</span>
<span class="n">cudaFree</span><span class="p">(</span><span class="n">a_keys</span><span class="p">);</span>
<span class="n">cudaFree</span><span class="p">(</span><span class="n">b_keys</span><span class="p">);</span>
<span class="n">cudaFree</span><span class="p">(</span><span class="n">c_keys</span><span class="p">);</span>
<span class="n">cudaFree</span><span class="p">(</span><span class="n">a_vals</span><span class="p">);</span>
<span class="n">cudaFree</span><span class="p">(</span><span class="n">b_vals</span><span class="p">);</span>
<span class="n">cudaFree</span><span class="p">(</span><span class="n">c_vals</span><span class="p">);</span></pre><p>Since the GPU merge algorithm may require extra buffer to store the temporary results, you need to provide a buffer of size at least larger or equal to the value returned from <code><a href="classtf_1_1cudaExecutionPolicy.html#a1febbe549d9cbe4502a5b66167ab9553" class="m-doc">tf::<wbr />cudaDefaultExecutionPolicy::<wbr />merge_bufsz</a></code>. The buffer size depends only on the two input vector sizes.</p></section>
</div>
</div>
</div>
</article></main>
<div class="m-doc-search" id="search">
<a href="#!" onclick="return hideSearch()"></a>
<div class="m-container">
<div class="m-row">
<div class="m-col-m-8 m-push-m-2">
<div class="m-doc-search-header m-text m-small">
<div><span class="m-label m-default">Tab</span> / <span class="m-label m-default">T</span> to search, <span class="m-label m-default">Esc</span> to close</div>
<div id="search-symbolcount">&hellip;</div>
</div>
<div class="m-doc-search-content">
<form>
<input type="search" name="q" id="search-input" placeholder="Loading &hellip;" disabled="disabled" autofocus="autofocus" autocomplete="off" spellcheck="false" />
</form>
<noscript class="m-text m-danger m-text-center">Unlike everything else in the docs, the search functionality <em>requires</em> JavaScript.</noscript>
<div id="search-help" class="m-text m-dim m-text-center">
<p class="m-noindent">Search for symbols, directories, files, pages or
modules. You can omit any prefix from the symbol or file path; adding a
<code>:</code> or <code>/</code> suffix lists all members of given symbol or
directory.</p>
<p class="m-noindent">Use <span class="m-label m-dim">&darr;</span>
/ <span class="m-label m-dim">&uarr;</span> to navigate through the list,
<span class="m-label m-dim">Enter</span> to go.
<span class="m-label m-dim">Tab</span> autocompletes common prefix, you can
copy a link to the result using <span class="m-label m-dim"></span>
<span class="m-label m-dim">L</span> while <span class="m-label m-dim"></span>
<span class="m-label m-dim">M</span> produces a Markdown link.</p>
</div>
<div id="search-notfound" class="m-text m-warning m-text-center">Sorry, nothing was found.</div>
<ul id="search-results"></ul>
</div>
</div>
</div>
</div>
</div>
<script src="search-v2.js"></script>
<script src="searchdata-v2.js" async="async"></script>
<footer><nav>
<div class="m-container">
<div class="m-row">
<div class="m-col-l-10 m-push-l-1">
<p>Taskflow handbook is part of the <a href="https://taskflow.github.io">Taskflow project</a>, copyright © <a href="https://tsung-wei-huang.github.io/">Dr. Tsung-Wei Huang</a>, 2018&ndash;2024.<br />Generated by <a href="https://doxygen.org/">Doxygen</a> 1.9.1 and <a href="https://mcss.mosra.cz/">m.css</a>.</p>
</div>
</div>
</div>
</nav></footer>
</body>
</html>