mesytec-mnode/external/taskflow-3.8.0/doxygen/examples/fibonacci.dox

79 lines
1.8 KiB
Text
Raw Normal View History

2025-01-04 01:25:05 +01:00
namespace tf {
/** @page fibonacci Fibonacci Number
We study the classic problem, <em>Fibonacci Number</em>,
to demonstrate the use of recursive task parallelism.
@tableofcontents
@section FibonacciNumberProblem Problem Formulation
In mathematics, the Fibonacci numbers, commonly denoted @c F(n), form a sequence
such that each number is the sum of the two preceding ones, starting from 0 and 1.
<tt>0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...</tt>
A common solution for computing fibonacci numbers is @em recursion.
@code{.cpp}
int fib(int n) {
if(n < 2) return n;
return fib(n-1) + fib(n-2);
}
@endcode
@section RecursiveFibonacciParallelism Recursive Fibonacci Parallelism
We use tf::Subflow to recursively compute fibonacci numbers in parallel.
@code{.cpp}
#include <taskflow/taskflow.hpp>
int spawn(int n, tf::Subflow& sbf) {
if (n < 2) return n;
int res1, res2;
sbf.emplace([&res1, n] (tf::Subflow& sbf) { res1 = spawn(n - 1, sbf); } )
.name(std::to_string(n-1));
sbf.emplace([&res2, n] (tf::Subflow& sbf) { res2 = spawn(n - 2, sbf); } )
.name(std::to_string(n-2));
sbf.join();
return res1 + res2;
}
int main(int argc, char* argv[]) {
int N = 5;
int res;
tf::Executor executor;
tf::Taskflow taskflow("fibonacci");
taskflow.emplace([&res, N] (tf::Subflow& sbf) { res = spawn(N, sbf); })
.name(std::to_string(N));
executor.run(taskflow).wait();
taskflow.dump(std::cout);
std::cout << "Fib[" << N << "]: " << res << std::endl;
return 0;
}
@endcode
The spawned taskflow graph for computing up to the fifth fibonacci number is shown below:
@dotfile images/fibonacci_7.dot
Even if recursive dynamic tasking or subflows are possible,
the recursion depth may not be too deep or it can cause stack overflow.
*/
}