mesytec-mnode/external/taskflow-3.8.0/examples/sycl/sycl_matmul.cpp

189 lines
4.7 KiB
C++
Raw Permalink Normal View History

2025-01-04 01:25:05 +01:00
// The example shows how to use syclFlow to multiply two 2D matrices.
#include <taskflow/taskflow.hpp>
#include <taskflow/sycl/syclflow.hpp>
// Matrix multiplication using GPU
auto gpu(int M, int N, int K) {
std::vector<int> ha, hb, hc;
int *da, *db, *dc;
tf::Executor executor;
tf::Taskflow taskflow("MatrixMultiplication");
sycl::queue queue;
// allocate the host and device storage for a
auto allocate_a = taskflow.emplace([&](){
ha.resize(M*N, M+N);
da = sycl::malloc_device<int>(M*N, queue);
}).name("allocate_a");
// allocate the host and device storage for b
auto allocate_b = taskflow.emplace([&](){
hb.resize(N*K, N+K);
db = sycl::malloc_device<int>(N*K, queue);
}).name("allocate_b");
// allocate the host and device storage for c
auto allocate_c = taskflow.emplace([&](){
hc.resize(M*K);
dc = sycl::malloc_device<int>(M*K, queue);
}).name("allocate_c");
// create a syclFlow to run the matrix multiplication
auto syclFlow = taskflow.emplace_on([&](tf::syclFlow& sf){
// copy data to da, db, and dc
auto copy_da = sf.copy(da, ha.data(), M*N).name("H2D_a");
auto copy_db = sf.copy(db, hb.data(), N*K).name("H2D_b");
auto copy_hc = sf.copy(hc.data(), dc, M*K).name("D2H_c");
auto _M = (M % 16 == 0) ? M : (M + 16 - M % 16);
auto _K = (K % 16 == 0) ? K : (K + 16 - K % 16);
auto kmatmul = sf.parallel_for(
sycl::nd_range<2>{sycl::range<2>(_M, _K ), sycl::range<2>(16, 16)},
[=](sycl::nd_item<2> item) {
int row = item.get_global_id(0);
int col = item.get_global_id(1);
if(row < M && col < K) {
int sum = 0;
for(int n = 0; n < N; n++) {
sum += da[row * N + n] * db[n * K + col];
}
dc[row * K + col] = sum;
}
}
).name("matmul");
// It is also possible to just use range and let the runtime decide the
// partition of groups, but the result is less efficient.
//
//auto kmatmul = sf.parallel_for(
// sycl::range<2>(M, K),
// [=](sycl::id<2> id) {
// int row = id[0];
// int col = id[1];
// int sum = 0;
// for(int n = 0; n < N; n++) {
// sum += da[row * N + n] * db[n * K + col];
// }
// dc[row * K + col] = sum;
// }
//).name("matmul");
kmatmul.succeed(copy_da, copy_db)
.precede(copy_hc);
}, queue).name("syclFlow");
auto free = taskflow.emplace([&](){
sycl::free(da, queue);
sycl::free(db, queue);
sycl::free(dc, queue);
}).name("free");
syclFlow.succeed(allocate_a, allocate_b, allocate_c)
.precede(free);
executor.run(taskflow).wait();
// You may uncomment the line below to dump the task graph
//taskflow.dump(std::cout);
return hc;
}
// Matrix multiplication using CPU
auto cpu(int M, int N, int K) {
std::vector<int> a, b, c;
tf::Executor executor;
tf::Taskflow taskflow;
auto ha = taskflow.emplace([&](){
a.resize(M*N, M+N);
}).name("allocate_a");
auto hb = taskflow.emplace([&](){
b.resize(N*K, N+K);
}).name("allocate_b");
auto hc = taskflow.emplace([&](){
c.resize(M*K, 0);
}).name("allocate_c");
auto pf = taskflow.for_each_index(0, M, 1, [&] (int m) {
for(int k=0; k<K; k++) {
for(int n=0; n<N; n++) {
c[m*K+k] += (a[m*N+n]*b[n*K+k]);
}
}
});
pf.succeed(ha, hb, hc);
//taskflow.dump(std::cout);
executor.run(taskflow).wait();
return c;
}
// Function: main
int main(int argc, char *argv[]) {
if(argc != 4) {
std::cerr << "usage: matrix-multiplication M N K\n";
std::exit(EXIT_FAILURE);
}
int M = std::atoi(argv[1]);
int N = std::atoi(argv[2]);
int K = std::atoi(argv[3]);
std::cout << "matrix A: " << M << 'x' << N << '\n'
<< "matrix B: " << N << 'x' << K << '\n'
<< "matrix C: " << M << 'x' << K << '\n';
// matrix multiplication using gpu
std::cout << "running gpu matrix multiplication ... ";
auto gbeg = std::chrono::steady_clock::now();
auto gres = gpu(M, N, K);
auto gend = std::chrono::steady_clock::now();
std::cout << "completed with "
<< std::chrono::duration_cast<std::chrono::milliseconds>(gend-gbeg).count()
<< " ms\n";
// matrix multiplication using cpu
std::cout << "running cpu matrix multiplication ... ";
auto cbeg = std::chrono::steady_clock::now();
auto cres = cpu(M, N, K);
auto cend = std::chrono::steady_clock::now();
std::cout << "completed with "
<< std::chrono::duration_cast<std::chrono::milliseconds>(cend-cbeg).count()
<< " ms\n";
// verify the result
int64_t error = 0;
std::cout << "verifying results ... ";
for(int i=0; i<M*K; ++i) {
error += abs(gres[i] - cres[i]);
}
std::cout << "abs-error=" << error << '\n';
return 0;
}