mesytec-mnode/external/taskflow-3.8.0/benchmarks/mnist/main.cpp

123 lines
3.3 KiB
C++
Raw Permalink Normal View History

2025-01-04 01:25:05 +01:00
#include <thread>
#include <iomanip>
#include <CLI11.hpp>
#include "dnn.hpp"
// Function: measure_time_taskflow
std::chrono::milliseconds measure_time_taskflow(
unsigned num_epochs,
unsigned num_threads
) {
auto dnn {build_dnn(num_epochs)};
auto t1 = std::chrono::high_resolution_clock::now();
run_taskflow(dnn, num_threads);
auto t2 = std::chrono::high_resolution_clock::now();
return std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1);
}
// Function: measure_time_omp
std::chrono::milliseconds measure_time_omp(
unsigned num_epochs,
unsigned num_threads
) {
auto dnn {build_dnn(num_epochs)};
auto t1 = std::chrono::high_resolution_clock::now();
run_omp(dnn, num_threads);
auto t2 = std::chrono::high_resolution_clock::now();
return std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1);
}
// Function: measure_time_tbb
std::chrono::milliseconds measure_time_tbb(
unsigned num_epochs,
unsigned num_threads
) {
auto dnn {build_dnn(num_epochs)};
auto t1 = std::chrono::high_resolution_clock::now();
run_tbb(dnn, num_threads);
auto t2 = std::chrono::high_resolution_clock::now();
return std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1);
}
// Procedure
void mnist(
const std::string& model,
const unsigned min_epochs,
const unsigned max_epochs,
const unsigned num_threads,
const unsigned num_rounds
) {
std::cout << std::setw(12) << "epochs"
<< std::setw(12) << "runtime"
<< std::endl;
for(unsigned epochs=min_epochs; epochs <= max_epochs; epochs += 10) {
double runtime {0.0};
for(unsigned i=0; i<num_rounds; i++) {
if(model == "tf") {
runtime += measure_time_taskflow(epochs, num_threads).count();
}
else if(model == "tbb") {
runtime += measure_time_tbb(epochs, num_threads).count();
}
else if(model == "omp") {
runtime += measure_time_omp(epochs, num_threads).count();
}
else assert(false);
std::cout << std::setw(12) << epochs
<< std::setw(12) << runtime / num_rounds / 1e3
<< std::endl;
}
}
}
// Function: main
int main(int argc, char *argv[]){
CLI::App app{"DNN Training on MNIST Dataset"};
unsigned num_threads {1};
app.add_option("-t,--num_threads", num_threads, "number of threads (default=1)");
unsigned max_epochs {100};
app.add_option("-E,--max_epochs", max_epochs, "max number of epochs (default=100)");
unsigned min_epochs {10};
app.add_option("-e,--min_epochs", min_epochs, "min number of epochs (default=10)");
unsigned num_rounds {1};
app.add_option("-r,--num_rounds", num_rounds, "number of rounds (default=1)");
std::string model = "tf";
app.add_option("-m,--model", model, "model name tbb|omp|tf (default=tf)")
->check([] (const std::string& m) {
if(m != "tbb" && m != "omp" && m != "tf") {
return "model name should be \"tbb\", \"omp\", or \"tf\"";
}
return "";
});
CLI11_PARSE(app, argc, argv);
std::cout << "model=" << model << ' '
<< "num_threads=" << num_threads << ' '
<< "num_rounds=" << num_rounds << ' '
<< "min_epochs=" << min_epochs << ' '
<< "max_epochs=" << max_epochs << ' '
<< std::endl;
mnist(model, min_epochs, max_epochs, num_threads, num_rounds);
return EXIT_SUCCESS;
}